На правах рукописи

Кислинский Юлий Вячеславович

ЭЛЕКТРОННЫЙ ТРАНСПОРТ В БИКРИСТАЛЛИЧЕСКИХ ПЕРЕХОДАХ И ГИБРИДНЫХ ГЕТЕРОСТРУКТУРАХ ИЗ КУПРАТНЫХ СВЕРХПРОВОДНИКОВ

Специальность 01.04.01 – «Приборы и методы экспериментальной физики»

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени кандидата физико-математических наук

МОСКВА – 2012

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте радиотехники и электроники им. В.А. Котельникова Российской академии наук (ИРЭ им. В.А. Котельникова РАН), Москва

Научный руководитель:	доктор физико-математических наук, старший научный сотрудник, Овсянников Геннадий Александрович
Официальные оппоненты:	Губанков Владимир Николаевич, доктор физико - математических наук, профессор; ИРЭ им. В.А.Котельникова РАН, зав. лабораторией фотоэлектронных явлений
	Мицен Кирилл Владимирович кандидат физико - математических наук, старший научный сотрудник, ФИАН им. П.Н.Лебедева РАН, зав. лабораторией сверхпроводимости

Ведущая организация:	Федеральное государственное бюджетное
	учреждение науки Институт физики твердого
	тела Российской академии наук.

Защита состоится <u>13</u> апреля 2012 г., в <u>10-00</u> на заседании диссертационного совета Д 002.231.03 при ИРЭ им. В.А. Котельникова РАН по адресу: 125009, Москва, ул. Моховая 11, корп. 7.

С диссертацией можно ознакомиться в библиотеке ИРЭ им. В.А. Котельникова РАН

Автореферат разослан «<u>12</u>» марта 2012 г.

Учёный секретарь диссертационного совета

41311

В. Н. Корниенко

кандидат физико-математических наук

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы, объект и предмет исследования. В последнее время большое внимание уделяется процессам протекания сверхпроводящего и квазичастичного тока в тонкопленочных структурах на основе купратных d_{x-v}^{2} обладают сверхпроводников (KC), которые симметрией сверхпроводящей волновой функции (D-сверхпроводники). В отличии от металлических сверхпроводников с s-симметричным изотропным параметром порядка (S- сверхпроводников), в D-сверхпроводнике параметр порядка меняет знак при изменении на 90° направления импульса квазичастиц в ab-плоскости кристаллической решетки. В результате, у контактов между D- и S-, а также между D- и D-сверхпроводниками, зависимость сверхпроводящего тока I_S от разности фаз ф между волновыми функциями параметра порядка (ТФЗ) может отличаться от - синусоидальной. Сложный химический состав КС и их высокая чувствительность к содержанию кислорода влияют на физические свойства контактов сверхпроводников вблизи границы раздела. В КС наблюдается высокая температура сверхпроводящего перехода (T_C) и амплитуда параметра выше, чем v обычных (металлических) порядка Δ существенно сверхпроводников, так у YBa₂Cu₃O_{7- δ} (YBCO) она достигает $\Delta \sim 30 \div 40$ мэВ при температуре Т=4.2 К. Однако, соответственного увеличения характерного напряжения переходов V_C=I_CR_N (I_C - критический ток, R_N – нормальное сопротивление), у D-сверхпроводников - не наблюдается, тогда как у Sсверхпроводников напряжение V_C~ Δ . Величина V_C определяет сигнальные и шумовые характеристики перехода. У наиболее воспроизводимых переходов в эпитаксиальных пленках YBCO на бикристаллических подложках V_C 1 мВ при T=77 К. Поэтому исследование зависимостей I_C и R_N от углов разориентации бикристаллических переходов и детектирование ими субмм. излучения представляет значительный интерес.

Структуры с магнито-активными прослойками вызывают большой интерес в настоящее время. Известны КС гетероструктуры с прослойкой из

PrBa₂Cu₃O₇ (PBCO), несверхпроводящего купрата который является диэлектриком с прыжковой проводимостью при стехиометрическом составе [1]. При других концентрациях кислорода РВСО может быть металлом и сверхпроводником. В работе исследовались гибридные гетестроструктуры, состоящие из КС и Nb. Нами использовалась прослойка из Ca_{1-x}Sr_xCuO₂ (CSCO), который при низких температурах является квазидвумерным гейзенберговским антиферромагнетиком (AF прослойка). Удельное _ сопротивление у СSCO выше, чем у РВСО, в сверхпроводящее состояние СSCO переходит в редких случаях, например, при синтезе под высоким давлением [2].

Объект исследования – механизм транспорта носителей тока в джозефсоновских переходах, имеющих 1 или 2 электрода - из купратного сверхпроводника.

Предмет исследования – три типа контактов, в которых исследуется эффект Джозефсона на постоянном токе или при СВЧ воздействии:

- симметричные бикристалические переходы в эпитаксиальных пленках YBCO, -гибридные оксидные меза-гетероструктуры Nb/Au/YBa₂Cu₃O₇ на наклонных пленках YBCO (t-гетероструктуры),

- гибридные оксидные меза-гетероструктуры Nb/Au/Ca_{1-x}Sr_xCuO₂/YBa₂Cu₃O₇ с антиферромагнитной прослойкой Ca_{1-x}Sr_xCuO₂ (а-гетероструктуры).

Цель и задачи исследования

Цель работы - определение физических механизмов транспорта носителей тока в джозефсоновских контактах из купратных сверхпроводников, являвшихся предметами исследования. Задачами работы являлись:

- разработка СВЧ методики измерения ток-фазовой зависимости для джозефсоновских переходов с несинусоидальной ТФЗ и ненулевой емкостью;

- определение ток-фазовых зависимостей гетероструктур на наклонных пленках YBCO и гетероструктур с AF-прослойками по данной CBЧ методике;

- определение модели транспорта носителей тока в симметричных бикристаллических переходах, нахождение границ применимости этой модели;

- экспериментальное определение условий проявления аномально большого эффекта близости на границах сверхпроводящий/антиферромагнитный купрат;

- экспериментальное исследование механизма подавления критического тока, которое вызвано изменением спинового состояния купратной прослойки.

Положения, выносимые на защиту

1. Для YBCO переходов на бикристаллических подложках с симметричными углами разориентации θ в ab-плоскости установлено, что с ростом θ от 8^0 до 45^0 характерные сопротивления границ R_NA возрастали на 1 порядок, а плотности тока j_C и характерные напряжения I_CR_N – убывали на 2 порядка и на 1 порядок - соответственно. Зависимости от θ объясняются моделью туннелирования электронов через локализованные состояния в бикристаллической границе.

2. Разработана СВЧ методика определения ТФЗ джозефсоновских переходов по изменению целых и дробных ступеней Шапиро от мощности внешнего сигнала, которая применима при высокой частоте сигнала и произвольной емкости перехода.

3. В а-гетероструктурах с прослойками Ca_{1-x}Sr_xCuO₂ наблюдался сверхпроводящий ток, плотность которого убывала с ростом толщины прослойки по экспоненте с масштабом 7÷10 нм. Наблюдалась отрицательная вторая гармоника ТФЗ, измереная СВЧ методикой в а-гетероструктурах.

4. Периоды магнитополевых зависимостей критического тока у гетероструктур с АF-прослойкой на порядок меньше, чем у t-гетероструктур без нее, что объясняется моделью сверхпроводник – антиферромагнетик – сверхпроводник.

Научная новизна диссертации

1. Экспериментально полученные зависимости электрофизических параметров бикристаллических переходов от угла разориентации подложки подтверждают модель электронного транспорта в них: сверхпроводник – диэлектрик с локализованными уровнями резонансного туннелирования нормальных носителей, - сверхпроводник [3]. Оценен радиус локализации нормальных носителей *а* на локализованных состояниях в межзеренных границах, на основании модели неупругого туннелирования носителей тока [4].

2. Обнаружена отрицательная вторая гармоника ТФЗ в t-гетероструктурах, в которых имеется электронный транспорт вдоль базовой плоскости КС; она

обусловлена d-симметрией параметра порядка в пленках YBCO.

В гетероструктурах с антиферромагнитной прослойкой наблюдалась отрицательная вторая гармоника ТФЗ, величиной от -4 % до - 25 %.

3. Экспериментально показано, что плотность сверхпроводящего тока в агетероструктурах аномально велика при толщинах AF-прослойки $d_M=12\div50$ нм. Характерная длина экспоненциального затухания сверхпроводящих корреляций составляла 7÷10 нм, что указывает на наличие аномально большого эффекта близости на границе КС со слоистым купратным антиферромагнетиком.

4. Обнаружено, что а-гетероструктуры с AF- прослойкой Ca_{0.5}Sr_{0.5}CuO₂ обладают существенно большей чувствительностью к магнитному полю, чем tгетероструктуры без прослойки. Магнитополевые зависимости критического тока гетероструктур с прослойкой V определяются отклонением антиферромагнитных намагниченности слоев ОТ идеального антиферромагнитного упорядочения под действием внешнего поля [5].

Практическая ценность работы

1. Исследования зависимости характерного напряжения бикристаллических переходов от прозрачности границы D~1/R_NA позволяют выбирать разориентации подложек так, чтобы сопротивления и критические токи переходов были оптимальны для применений.

2. Методика измерения ток – фазового соотношения по зависимостям целых ступеней Шапиро и первой дробной ступени от СВЧ мощности позволяет получать модуль и знак величины второй гармоники ток – фазовой зависимости. Она применима для переходов Джозефсона с произвольной емкостью и с плотностями сверхпроводящего тока, превосходящими 1 А/см². При доле второй гармоники, превышающей половину первой, возможно использование гетероструктур для создания «тихих» фазовых кубитов.

3. Обнаруженная магнитополевая зависимость тока I_C для а-гетероструктур позволяет использование их, как магнито - чувствительных элементов и элементов магнитной памяти.

4. В прослойках $Ca_{0.5}Sr_{0.5}CuO_2$ оценены радиус локализации носителей $a \approx 5 \pm 2$

нм и плотность состояний на уровне Ферми $g\sim 10^{18}$ $3B^{-1}$ см⁻³. Радиусы *а* в CSCO - велики, как в PrBa₂Cu₃O₇; величины g - малы, как в аморфном Si. CSCO, имея достоинства обоих барьерных материалов, перспективен для приложений.

Апробация работы. Результаты докладывались на: 33-ем «Совещании по физике низких температур», Екатеринбург, (2003); The 5-th, 6-th International Kharkov Symposium on Physics and Engineering of Microwaves Millimeter and Submillimeter Waves, Харьков, 2004, 2007 гг.; Euro-Asian Symposium Magnetism on a Nanoscale, Казань, 2007 г.; «Нанофизика и наноэлектроника», Н. Новгород, 2006, 2007, 2008 гг.; «Фундаментальные проблемы ВТСП», Звенигород, 2006, 2008 гг.; на XVI - XVII Симпозиумах "Nanostructures: physics and technology" в 2008, 2009 гг, - самим автором. Результаты вошли в труды конференций: [A7], [A11]; European conference on Appl. Supercond., Brussels, Belgium, 2007 г.; 12 International Supercond. Electronics conference, Fukuoka, Japan 2009 г.

Результаты диссертации отражены в 22 печатных работах, из них 20 статей в журналах и 2 публикации сборниках конференций. Все 22 работы напечатаны изданиях, которые входят в Перечень, определенный ВАК РФ.

Достоверность результатов. Подтверждена большим количеством исследованных образцов, для ряда графиков - около 30. Результаты экспериментов соответствуют теоретическим моделям. Публикации по теме диссертации вызвали интерес научной общественности: индекс цитирования статей [А3, А12, А15, А18] - равен 7 и более.

Личный вклад автора. В работах [A1 - A5], [A10], [A11] по бикристаллическим переходам автор изготавливал образцы и проводил электрические измерения. В соавторстве с др. В.Т. Liu (Institute of Physics Chinese Acad. of Sci.) обнаружено изменение сопротивления канала из YBCO под действием электрического поля, [A3]. Экспериментально обнаружено соотношение между скоростями нарастания R_NA и - уменьшения j_C с ростом разориентации для симметричных переходов на бикристаллах $ZrO_2+Y_2O_3$, [A4].

В работах [A6] – [A9], [A12], [A13], [A16], [A20] по t-гетероструктурам автор проводил электрические измерения и участвовал в написании статей. Образцы

были изготовлены Ф.В. Комиссинским. Автором обнаружена вторая гармоника в ТФЗ t-гетероструктур [А9]. Для [А14] автор получил экспериментальные данные, проводил сравнение с теоретическими формулами, полученными В.К. Корневым и Т.Ю. Карминской.

В работах [A15], [A18 - 19], [A21 - 22], по а-гетероструктурам с прослойкой, диссертант обнаружил вторую гармонику ТФЗ, [A18]. Экспериментально обнаружил «гигантские» магнитоосцилляции критического тока, [A15], [A19]. Образцы были изготовлены А.В. Шадриным.

Объем и структура диссертации. Работа состоит из введения, пяти глав, заключения и приложения. Диссертация содержит 57 рисунков, 6 таблиц и список цитированной литературы из 153 статей.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении обоснован выбор темы диссертации и описана ее структура.

Глава 1 – представляет собой обзор литературы. Описываются свойства КС на примере YBa₂Cu₃O_{7-δ} и моделей переходов из КС: бикристаллических контактов и гибридных структур между D- и S-сверхпроводниками. Обсуждаются переходы с несинусоидальными ТФЗ и их возможное применение для создания «тихих» кубитов. Указаны цели работы.

В Главе 2 описываются методы электрических измерений, использованые в диссертации. Описаны измерения вольтамперных характеристик (BAX) и тока шума измерительной системы I_F . Приведены измерения зависимостей критического тока от индукции магнитного поля $I_C(B)$, где $B=\mu_0H$, $\mu_0=4\pi \cdot 10^{-7}$ Г/м, H – напряженность магнитного поля. Зависимости получены путем записи ВАХ при различных значениях B и определения тока I_C – для каждой BAX.

В главе дана методика вычисления доли второй гармоники $q=I_{C2}/I_{C1}$ в ток – фазовой зависимости вида: $I_S=I_{C1}sin\phi+I_{C2}sin(2\phi)$. ТФЗ вычисляется из зависимостей высот дробных ступеней Шапиро $I_{1/2}$ при напряжении $V_{1/2}=hf_e/(4e)$, и целых ступеней (I_n , n=1,2...) при $V_n=nhf_e/2e$ – от тока внешнего

сигнала $\alpha = I_{RF}/I_C$ частотой f_e. В работах [A12], [A14] получены 2 формулы для перехода со второй гармоникой и с емкостью: по первой - вычисляются зависимости $I_n(\alpha)$, по второй – зависимость $I_{1/2}(\alpha)$. Формулы получены в модели резистивно – шунтированного (RSJ) перехода в высокочастотном (BЧ) пределе, который выполняется при условиях: $\omega \gg 1$ или $\omega^2 \beta_C \gg 1$, где $\omega = h f_e/(2 e I_C R_N)$ – нормированная частота, $\beta_C = 4 \pi e I_C R_N^2 C/h$ – параметр МакКамбера.

Рис. 1. Определение гармоники ТФЗ. (а) При ω=1.6 данные измерений I_C показаны кругами, высоты первых ступеней I₁ – треугольники, дробных ступеней I_{1/2} – ромбы; сплошная – расчет для I_C, пунктирная – для I₁. (b) При ω=1.6: ромбы – высоты I_{1/2}, сплошная – расчет. При ω=2.2: квадраты – высоты ступеней I_{1/2}, пунктирная – расчет. Величина q= -0.14, [A12].

Сравнением высот целых ступеней с расчетом по первой формуле находится модуль q, (рис. 1a). Модуль и знак q - получены аппроксимацией зависимостей $I_{1/2}(\alpha)$ второй формулой по единственному параметру q, для разных частот ω , (рис. 1b). Точность методики определяется обнаружением дробной ступени, максимум высоты которой: $I_{1/2}=1.16I_{C2}$ при $\omega \gg 1$. При измерении R_d минимальное обнаружимое отношение $I_{C2}/I_F \approx 0.3/1.16 \approx 0.25$. Ранее в работе [6], метод измерения BAX давал минимальный обнаружимый ток $I_{C2}/I_F \approx 1$.

Известно, что измерения детекторного отклика на СВЧ сигнал при малых мощностях сигнала Р слабо возмущают процессы в переходе. Наблюдались «основной» отклик при напряжении V₁=hf/2e и «дробный» отклик при V_{1/2}. Зависимость переменного напряжения отклика перехода η от постоянного

смещения V показана на рис. 2. В ВЧ пределе форма η(V) рассчитана в работах [A14, A16]. Доля гармоники считалась по приближенной формуле:

$$|q| \approx 0.5 \cdot \sqrt[2]{\eta_{1/2} R_{d1} / (\eta_1 R_{d1/2})}$$
(1)

Здесь η_1 , $\eta_{1/2}$ –амплитуды основного и дробного откликов, R_{d1} , $R_{d1/2}$ – дифференциальные сопротивления автономной ВАХ при V_1 и $V_{1/2}$ [A20].

Рис. 2. Зависимость отклика - η от напряжения, для а- гетероструктуры с прослойкой Ca_{0.5}Sr_{0.5}CuO₂, d_M=20 нм. f_e=119.5 ГГц. Точки - η (V), линия – BAX перехода, горизонтальная стрелка указывает - ширину отклика, вертикальная – перепад η_1 . На вставке перепады дробного отклика $\eta_{1/2}$ - ромбы, их зависимость от мощности – штриховая линия; η_1 - треугольники, зависимость от мощности – сплошная линия, [A22].

В главе 3 описываются бикристаллические переходы с разворотами базовой плоскости YBCO вокруг оси с. Даны результаты для переходов на подложках $ZrO_2+Y_2O_3$ с симметричными углами разориентации $\theta=2\alpha$, где α - угол между а-осью половины подложки и ее плоскостью сращивания.

Описана технология изготовления переходов на бикристаллических подложках. При эпитаксиальном напылении YBCO, на бикристаллической границе образуется межзеренная граница в YBCO с той же разориентацией θ , что и у подложки. Для создания микромостиков, пересекающих межзеренную границу YBCO в пленках средней толщины $t_Y=200\div300$ нм, использовалось травление ионами бислоя Au/YBCO. Вторым ионным травлением удалялся слой Au с микромостика [A4]. Удаление Au с микромостиков из пленок тонких пленок YBCO с $t_Y\approx50$ нм происходило в растворе I_2+KI+H_2O , [A2].

По модели резонансного туннелирования нормальных носителей через локализованные состояния в границе и прямого туннелирования куперовских пар, зависимости от толщины диэлектрика d записываются в виде: $R_NA \sim exp(k_0d)/n_Sn_L$, $j_C \sim n_Sexp(-2k_0d)$. Здесь $n_S - плотность$ состояний в сверхпроводящем YBCO, $n_L - плотность$ локализованных состояний в границе; $k_0 = (8\pi^2 m_e E_b/h^2)^{1/2}$ - масштаб экспонент, m_e – масса носителя, E_b – высота барьера, [3]. Экспериментальные зависимости на рис. 3 приближены экспонентами: $R_NA \sim exp(\alpha_R\theta)$, $j_C \sim exp(-\alpha_J\theta)$. Масштабы экспонент отличались вдвое: $\alpha_J = (0.12 \div 0.14) \pm 0.02$, $\alpha_R = (0.058 \div 0.061) \pm 0.014$ град⁻¹, в согласии с теорией работы [3]. Зависимости от угла разориентации строились для 20 – 35 переходов, с углами $\theta = 8^0 \div 45^0$, при 7 разных температурах в диапазоне $4 \div 50$ К.

Рис. 3. Зависимости нормальных сопротивлений R_NA (треугольники) и плотностей токов критических токов j_C (круги) от θ. Штриховая и сплошная линии – экспоненциальные зависимости от θ для j_C и R_NA – соответственно. T=50 K, [A4].

Рис. 4. Зависимость характерного напряжения от проводимости $G/A=1/(R_NA)$. Сплошная линия – аппроксимация $V_C \sim (R_NA)^m$. T=4.2 K, [A4].

Из модели следует: $V_C \sim (n_S^2 n_L)^{-1} / (R_N A) \sim (n_S^2 n_L)^{-1} \cdot G/A$. Экспериментальная зависимость V_C от нормальной проводимости показана на рис. 4. Характерные напряжения аппроксимировались как: $V_C = c \cdot (R_N A)^m$ для переходов с $\theta = 18 \div 45^0$. Получены параметры: $c = 0.077 \pm 0.015$ мВ·мкОм·см² и m=-0.98±0.2, что соответствует модели резонансного туннелирования из работы [3].

Далее рассматриваются причины отклонений от указанной модели при $\theta=8^{0}$ и $\theta \square 36^{0}$. При измерении нормальной проводимости переходов с $\theta=45^{0}$ обнаружено ее увеличение с ростом температуры: G(T)=G₁+G₂(T-T₂)^M, с параметрами M=0.6÷1.6, T₂=45 K. Вклад G₂ соответствует модели неупругого туннелирования через N=2 локализованных состояния, по которой G(T)=G₁+G₂T^{4/3} [4]. Толщина диэлектрика d находилась из емкости перехода C~ $\beta_{C}/(I_{C}R_{N}^{2})$, как плоского конденсатора: C= $\epsilon\epsilon_{0}$ A/d, а β_{C} - по формуле Заппе [7]:

$$\beta_C = [2 - (\pi - 2)(I_R/I_C)] \cdot [I_R/I_C]^{-2}, \qquad \frac{d}{\varepsilon} = \frac{4\pi\varepsilon_0}{h} \cdot \frac{AI_C R_N^2}{\beta_C} \qquad (2)$$

Здесь I_R – ток возврата гистерезисной ВАХ. Для 5 переходов с θ =45⁰ величина С/А=18±4 фФ/мкм², d/ε=0.49±0.11 нм. Согласно [8], проницаемость в границе є≈5, откуда d=2.5±0.5 нм. В работе [4] указано: d/(N+1)³<a□d/N³, откуда оценка радиуса локализаци нормальных носителей в границе: *a*≈2.5/2³=0.3 нм.

Измерения высот 3 первых ступеней, $I_n(P)$, на частоте $f_e \approx 12 \ \Gamma \Gamma ц$ на переходах с $\theta = 8^0$ дали нулевые минимумы. Следовательно, их $T\Phi 3$ – была синусоидальна. В переходах с $\theta = 8^0$ толщина диэлектрика d~0.5 нм<2*a*, модель резонансного туннелирования - неприменима и соотношение $V_C \sim (R_N A)^{-1}$ – не выполняется.

В главе описываются детекторные характеристики YBCO переходов на подложках Al_2O_3 с разориентацией $\theta=12^0+12^0$. Получена зависимость ширины основного отклика 2 δ f от температуры перехода. Полуширина отклика для RSJ перехода, при уширении тепловыми флуктуациями, дана в монографии [9]:

$$\delta f = 4\pi \left(\frac{2e}{h}\right)^2 kT \frac{R_{d1}^2}{R_N} \left[1 + \frac{I_C^2}{2I_0^2}\right] \approx 40.573T \cdot \frac{R_{d1}^2}{R_N} \quad \text{MFu}$$
(3)

Величины 2δf возрастали линейно с температурой по RSJ модели, но были в ~1.5 раза больше, чем следует из формулы (3). Отклик бикристаллических переходов на положках Al₂O₃ на сигнал с f_e≈500 ГГц наблюдался при азотных

температурах вплоть до нормированной частоты ω=40 при T=82 К.

Глава 4 посвящена гибридным оксидным меза-гетероструктурам Nb/Au/YBCO на YBCO c наклонных пленках направлением [1,1,20] перпендикулярным подложке (далее t-гетероструктуры). На поверхности наклонных пленок есть два вида граней, перпендикулярных направлениям [001] и [110]. Ток, протекающий вдоль [110] УВСО, оказывает большое влияние на параметры t-гетероструктур, в этом направлении величины R_NA – на интерфейсе Au/YBCO ниже, чем в направлении [001] YBCO. Разрез tгетероструктуры показан ниже, на рис. 7. В гл. 4 рассматриваются tгетероструктуры без прослойки между Au и YBCO. Переходы t- и агетероструктур изготавливались в виде квадратов со стороной L=10÷50 мкм².

Сначала описываются свойства t-гетероструктур на постоянном токе. Для них получены средние величины: $j_C=7.5\pm2.5$ A/cm², $R_NA=(8.8\pm3.7)\cdot10^{-6}$ Oм·cm², характерного напряжения $V_C=60\pm15$ мкВ, $\beta_C=4.4\pm1.3$, и отношение d/ $\epsilon\approx0.35\pm0.2$ нм. При $\epsilon=5$ определена толщина барьера d $\approx1\div2$ нм, аналогично работе [7].

Прозрачность границы t-гетероструктуре (D) вычислена в модели двух металлов с разными Ферми импульсами, разделенных барьером, [10]. Расчет дает величину D \approx 1.9 \cdot 10⁴. В предположениях D \ll 1 и тонкого барьера d<ξ по формулам, полученным в статье [11], вычислено напряжение первой гармоники TФЗ V_{C1}=I_{C1}R_N \approx 400 мкВ и второй гармоники V_{C2}=I_{C2}R_N \approx 0.1 мкВ. Расчетные значения V_{C1} по порядку величины близки к полученным в эксперименте. Измеренные значения V_{C2} \sim 10 мкВ – на 2 порядка больше теоретических, что возможно, вызвано протеканием компоненты I_{C2}sin(2 ϕ) через связанные андреевские состояния при транспорте через грани (110) YBCO. На наличие этих состояний в окрестности энергии Ферми E_F YBCO указывает пик дифференциальной проводимости G_D при ±6 мB, рис. 5. При V>6 мВ проводимость нарастает с напряжением, наблюдается недостаток тока; эти особенности BAX характерны для туннельных переходов [12]. В целом, t-гетероструктуры можно описать моделью туннельного перехода между S- и D-сверхпроводниками с потенциальным барьером на границе Au/YBCO.

Зависимости I_C(B) у t-гетероструктур отличаются от – фраунгоферовых тем, что имеют прогиб вниз в пределах главного пика. Это прогиб возникает в расчетах, если контакт содержит фасетки, являющиеся φ -переходами, [A13]. Зависимости I_C(B) t-гетероструктур содержат два периода, один из которых равен кванту магнитного потока Φ_0 , а другой – $\Phi_0/2$. Наличие двух периодов объясняется моделью, в которой t-гетероструктура является параллельной цепью из двух видов фасеток: со значительной второй гармоникой ТФЗ такой, что q<-0.5, – φ -переходов, и с малой гармоникой: |q|<0.5 - 0-переходов.

Рис. 5. ВАХ t-гетероструктуры в слабом магнитном поле, пунктир - прямая $I=V/R_N$, T=4.2 K. Точки - зависимость проводимости $G_D(V)$. На вставке – ВАХ той же t-гетероструктуры при H=0. [A15].

Рис. 6. Зависимости полуширин основного отклика δf_1 (треугольники) и дробного - $\delta f_{1/2}$ (ромбы) от соотвественно R_{d1}^2/R_N и $R_{d1/2}^2/R_N$ –. Прямая – расчет δf_1 .

В главе описываются измерения ТФЗ t-гетероструктур по CBЧ методике. Расчет полуширины отклика - δf по формуле (3) при T=4.2 К показан на рис. 6 линией. Экспериментальные величины δf_1 , $\delta f_{1/2}$ и близки к минимуму, который определяется для δf_1 термическими флуктуациями на RSJ переходе. Вторая гармоника ТФЗ обнаруживалась на всех гетероструктурах, за исключением переходов с малыми токами I_C \Box 3 мкА, когда дробные ступени не наблюдались из-за флуктуаций, [A9]. Измерения проводились и по ступеням Шапиро [A12], и по детекторным откликам [A20]. Получены величины q=-0.1÷ -0.2.

Глава 5 посвящена гибридным оксидным гетероструктурам с антиферромагнитной прослойкой Ca_{1-x}Sr_xCuO₂ (далее а-гетероструктуры).

Параметры элементарной ячейки с симметрией 4/mmm у CaCuO₂ составляют a=b=0.385 нм, они близки к параметрам поверхности подложки NdGaO₃ (110): 0.385 и 0.386 нм, а также к параметру YBCO: a=0.386 нм. Поэтому пленки CSCO росли - эпитаксиально и на NdGaO₃, и на YBCO. CSCO - прыжковый проводник с переменной длиной прыжка, с зависимостью проводимости вида: $\sigma(T) = \sigma_0 \cdot \exp[-(T_0/T)^{1/4}]$, где T₀=24/(π kg a^3) – экспериментальная константа, *a* – радиус локализации носителей тока, g – плотность состояний на уровне Ферми. Для состава Ca_{0.5}Sr_{0.5}CuO₂ нами измерены константы T₀~(0.4÷3)·10⁶ K, из них получены величины g a^3 ~0.02÷0.2 Эв⁻¹. Удельное сопротивление $\rho(4.2)>10^4$ Ом·см – получено экстраполяцией данных R(T) к T=4.2 K.

Разрез и схема электрических измерений а-гетероструктуры приведены на рис. 7а. При температурах ниже Т_{CNb}≈8.5 К пленки YBCO и Nb под контактами были – сверхпроводящими, измерения BAX - четырехточечными.

Рис. 7. Разрез гетероструктуры с прослойкой (а) и ее фотография (б). На верхней половине фотографии находятся слои Au/CSCO/YBCO, на нижней –слои Au/Nb. Темное поле – диэлектрик SiO₂, изолирующий торцы гетероструктуры от верхнего электрода.

В главе 5 рассказывается об эффекте близости в а-гетероструктурах. Зависимости от толщины СSCO представлялись экспонентами: $R_NA=A_Rexp(d_M/\alpha_R)$, $j_C=A_Jexp(-d_M/\alpha_J)$, с параметрами: A_R , α_R и A_J , α_J , на рис.8. Различие экспериментальных параметров: $\alpha_J = 8.7$ нм и $\alpha_R = 8.5$ нм меньше, чем их погрешность: $7.8 \le \alpha_R \le 9.4$, $7.7 \le \alpha_J \le 10$. Учитывая интервалы значений: $0.13 < A_R < 0.26$ мкОм·см² и $310 < A_J < 815$ А/см², получим интервал $V_C = A_R A_J =$ =40 \div 210 мкВ, в котором лежит большинство величин V_C а-гетероструктур. Зависимость V_C от толщины прослойки не обнаружена для d_M =12 \div 50 нм

Рис. 8. (а) – зависимости сопротивлений R_NA, и (b) - плотностей тока j_C от – d_M при 4.2 К. Данные для а-гетероструктур черные символы: с L=10 мкм - кресты, 20 мкм – круги, 30 мкм – треугольники, 40 мкм – ромбы, 50 мкм – пятиугольники; для t-гетероструктур – светлые символы. Аппроксимации – сплошные линии, доверительные интервалы – пунктир, [A22].

Рис. 9. Зависимость отношений d₀/є от d_M. Даннные для состава x=0.5 – ромбы, x=0.15 – круги. Сплошная линия – аппроксимация по черным ромбам, штрихпунктир – ее погрешность. Пунктир – интервал величин d/є полученный для tгетероструктур.

Отношения d/ ε вычислены для a-гетероструктур по гистерезису BAX, данные показаны на рис. 9. По формуле (2) расчитаны параметры $\beta_C \approx 0.9 \div 3$ и удельные емкости C/A $\approx 1 \div 90 \ \phi \Phi/\text{мкm}^2$. Методом наименьших квадратов для этих данных получено: $d_0/\varepsilon = (0.35 \pm 0.05)[d_M - (22\pm 4)]$, нм.

По нашей модели над интерфейсом CSCO/YBCO находится слой металлического CSCO с толщиной d_N , он не дает вклада в емкость C/A~ ϵ /d₀. В прослойках Ca_{0.5}Sr_{0.5}CuO₂ толщина $d_N \approx 20$ нм, при составе Ca_{0.85}Sr_{0.15}CuO₂ $d_N \sim 45$ нм. Над металлическим CSCO лежит диэлектрическая часть прослойки толщиной $d_0 \approx d_M$ - d_N . В случае $d_M \leq d_N$ отношения d_0/ϵ а-гетероструктур близки к $d_0/\epsilon \approx 0.35 \pm 0.2$ нм, полученному для t-гетероструктур в главе 4. В этом случае,

отсутствуют вклады в проводимость: G(V)~V^{4/3} и G(T)~T^{4/3}, поэтому неупругое туннелирование – не наблюдается. Для таких а-гетероструктур предложена модель S/I/AF/S с диэлектрическим барьером на интерфейсе Au/CSCO и многослойной антиферромагнитной прослойкой. Соседние плоскости (111) CSCO имеют противоположную намагниченность (антиферромагнетик G-типа), по данным работы [13]. В модели предполагается, что AF- прослойка состоит из металлических ферромагнитных слоев, обменное поле лежит в плоскости прослойки, имеет противоположную ориентацию в соседних слоях и обменную энергию H_{ex} <E_F. Для такой прослойки теоретически получен дальнодействующий эффект близости в работе [14]. Параметры прослоек CSCO: ξ_{AF} ~10 нм - длина когерентности и H_{ex} ~2÷3 мВ - обменная энергия, рассчитаны по зависимости і_C(d_M) в работе [A22].

Рассматривались а-гетероструктуры с прослойками $Ca_{0.5}Sr_{0.5}CuO_2$ с толщинами $d_M>d_N$, для которых характерны отсутствие сверхтока или большие отношения $d_0/\varepsilon \gg 0.35$ нм. Транспорт носителей соответствовал прыжковой проводимости при $T>T_{VRH}$, или наблюдались вклады в проводимость $G_2 \infty V^{4/3}$ и $G_2 \infty T^{4/3}$ (см. главу 3). Радиус локализации носителей *a* оценивался аппроксимациией прыжковых ВАХ по параметру a/d_0 методами работы [15]; получена оценка $a=3.1\div3.5$ нм. Из зависимости: $G_2 \sim d^{-1} \exp[-2d_0/(3a)]$ коэффициентов G_2 при вкладах $G_2 \propto V^{4/3}$ и $G_2 \propto T^{4/3}$ от толщины d_0 получены оценки: $a=5.0\div5.6$ нм по $G_2(V)$, $a=5.7\div6.6$ нм по $G_2(T)$, методом из работы [16].

Из этих данных средняя оценка радиуса локализации носителей в $Ca_{0.5}Sr_{0.5}CuO_2$: $a=5\pm 2$ нм. Из величин $T_0=(0.7\div 1)\cdot 10^6$ К - для а-гетероструктур, получен порядок плотности состояний на уровне E_F : $g\approx(0.2\div 5)\cdot 10^{18}$ э B^{-1} см⁻³.

Даны экспериментальные результаты исследования мангнитополевых зависимостей критического тока а-гетероструктур $I_C(B)$. Обнаружено, что период осцилляций критического тока в этих зависимостях - B_0 у гетероструктур с прослойкой $Ca_{0.5}Sr_{0.5}CuO_2$ на порядок меньше, чем у t-гетероструктур (см. рис. 10). Период этих осцилляций уменьшался с ростом толщины слоя $Ca_{0.5}Sr_{0.5}CuO_2$. Форма зависимости $I_C(B)$ объясняется моделью

джозефсоновского перехода со слоистой антиферромагнитной прослойкой, в которой магнитнополевая зависимость критического тока определяется спиновым состоянием прослойки, как теоретически предсказано в работе [5].

Рис. 10. Зависимость периодов B₀ в гетероструктурах. Периоды для агетероструктур с d_M=50 нм – квадраты, для d_M=20 нм – треугольники и расчет B₀ кресты, для - t-гетероструктур – круги. Сплошная - линейная аппроксимация для для t-гетероструктур. Светлые символы – B₀ - в перпендикулярном поле, черные - в – параллельном, [A19].

Рис. 11 Вторая гармоника ТФЗ у агетероструктур в зависимости от d_M . Квадраты – значения q, измереннные по ступеням, треугольники – по откликам. Открытые символы – данные для агетероструктур с прослойками CSCO x=0.15, черные – с x=0.5. Данные для одного перехода, но при разных частотах f_e, указаны номером образца.

Ширины основного и дробного детекторного откликов определяются отношением R_d^2/R_N по формуле (3), которая получена в монографии [9] для уширения линии генерации RSJ перехода термическими флуктуациями. Как показано ранее, величины q, вычисленные по ступеням Шапиро, близки к значениям, полученным по формуле (1) из измерений откликов. Для а-гетероструктуры с d_M =20 нм по измерению откликов, показанному на рис. 2, получен |q|=0.27, а из измерений ступеней получены величины q=-0.23 и -0.25 для частот f_e=119.5 и f_e=105 ГГц (рис. 11). В а-гетероструктурах наблюдалась вторая гармоника ток-фазовой зависимости величиной от -4 до -25 % от первой.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ

1. Лля $YBa_2Cu_3O_7$ бикристаллических симметричных переходов С разориентацией осей в базовой плоскости на подложках ZrO₂+12 % Y₂O₃, установлено, что характерные сопротивления границ R_NA экспоненциально увеличивались с ростом угла разориентации θ . Плотности сверхпроводящего тока экспоненциально снижались с ростом угла θ - вдвое быстрее. При углах $\theta \Box 36^{0}$ наблюдался рост нормальной проводимости с повышением температуры, соответствует неупругому туннелированию через что локализованные состояния. Оценен радиус локализации носителей *а*≈0.3 нм.

2. Разработана СВЧ методика измерения соотношения между джозефсоновским током и разностью фаз параметров порядка на переходе, которая основана на измерении динамических свойств переходов под действием внешнего СВЧ сигнала. Модуль и знак второй гармоники ток-фазовой зависимости вычисляются из совокупности графиков высот целых и дробных ступеней Шапиро от мощности облучения. Вторая гармоника ток-фазовой зависимости может определяться из детекторного отклика перехода путем сравнения двух особенностей: дробного отклика при напряжении дробной ступени Шапиро с - основным откликом при напряжении первой ступени.

3. Исследованы транспортные характеристики гибридных оксидных мезагетероструктур Nb/Au/YBa₂Cu₃O₇ на наклонных пленках YBCO, в которых значительный вклад в проводимость гетероструктуры дает перенос тока вдоль базовой плоскости купрата. Магнитополевые зависимости критического тока соответствуют модели, по которой наклонные гетероструктуры состоят из субмикроных фасеток двух видов: 0- и ф-переходов. По CBЧ методике у наклонных гетероструктур измерена отрицательная вторая гармоника токфазовой зависимости, величиной -10÷-20 % от первой.

4. В гибридных оксидных меза-гетероструктурах Nb/Au/Ca_{1-x}Sr_xCuO₂/ /YBa₂Cu₃O₇ с антиферромагнитными прослойками Ca_{1-x}Sr_xCuO₂ толщиной от 12 до 50 нм наблюдался сверхпроводящий ток, с плотностью $1\div500$ A/cm².

Получена длина затухания сверхпроводящего параметра порядка в прослойках: 7÷10 нм. Показано, что причиной эффекта Джозефсона в гетероструктурах с прослойкой является аномально большой эффект близости в слоистом антиферромагнетике. У гетероструктур с прослойкой наблюдалась вторая гармоника ток-фазовой зависимости величиной от -4 до -25 % от первой.

5. Обнаружено, что период осцилляций критического тока от магнитного поля у гетероструктур с прослойкой $Ca_{0.5}Sr_{0.5}CuO_2$ на порядок меньше, чем у гетероструктур без прослойки. Период осцилляций критического тока, который уменьшается с ростом толщины слоя $Ca_{0.5}Sr_{0.5}CuO_2$, а также форма зависимости критического тока, объясняются моделью джозефсоновского перехода со слоистой антиферромагнитной прослойкой, в которой магнитополевая зависимость критического тока определяется спиновым состоянием прослойки.

ОСНОВНЫЕ ПУБЛИКАЦИИ АВТОРА ПО ТЕМЕ ДИССЕРТАЦИИ

A1. S.A. Zhgoon, G.D. Lobov, <u>Yu.V. Kislinskii</u>, A.R. Kuzhakhmetov, E.A. Stepantsov// Phase locking up to 2.5 THz in grain-boundary Josephson junctions at 77 K. Applied Superconductivity **3**, pp. 615-619 (1995).

A2. <u>Yu.V. Kislinskii</u>, Zhao Bai-ru, Wu Pei-jun, Peng Xhi-qiang, Cheng Ying-fei, Yang Tao, Chen Lie, Sun Ji-jun, Xu Bo, Wu Fei, Zhou Yue-liang, Li Lin, Zhao Zhong-ziang// YBa₂Cu₃O₇ Bicrystal Josephson Junctions and dc SQUIDs. Chinese Phys. Lett. **13**, pp. 390-393 (1996).

A3. B.T. Liu, Z. Hao, Y.F. Chen, B. Xu, H. Chen, F. Wu, and B.R. Zhao, <u>Yu.</u> <u>Kislinskii</u> and E. Stepantsov// Investigation on Ag/Pb($Zr_{0.53}Ti_{0.47}$)O₃YBa₂Cu₃O₇ three-terminal system with small gate area. Applied Phys. Lett **74**, pp. 2044 – 2046 (1999).

Ю.В. Кислинский, A4. E.A. Степанцов, 3.Г. Иванов, T. Клаесон// Симметричные ВТСП бикристаллические переходы: зависимость электрофизических свойств от угла разориентации. ФТТ 43, стр. 581-586 (2001). A5. Y.V. Kislinskii, K.Y. Constantinian, I.V. Borisenko, G.A. Ovsyannikov, P. Yagubov// Submillemeter wave signal detection by bicrystal YBCO Josephson

junctions at liquid nitrogen temperatures. Physica C 372-376, pp. 436 - 439 (2002).

А6. Ф. В. Комиссинский, Г.А. Овсяников, <u>Ю.В. Кислинский</u>, И.М. Котелянский, З.Г. Иванов// Андреевские состояния и эффект Джозефсона в сверхпроводниковых гетероструктурах в тонких пленках YBa₂Cu₃O_x. ЖЭТФ **122**, стр. 1247 – 1259 (2002).

A7. G.A. Ovsyannikov, P.V. Komissinskii, E. Il'ichev, <u>Y.V. Kislinskii</u>, and Z.G. Ivanov// Josephson effect in Nb/Au/YBCO heterojunctions. IEEE Trans. on Appl. Supercond. **13**, pp. 881 – 884 (2003). Рецензируемая публикация в трудах конференции, входит в Перечень ВАК.

A8. G.A. Ovsyannikov, P.V. Komissinskii, <u>Y.V. Kislinskii</u>, Z.G. Ivanov// Superconducting current-phase relation and Andreev bound states in Nb/Au/ YBa₂Cu₃O_x Josephson Heterojunctions. Modern Phys. Lett. B **17**, pp. 569 – 578 (2003).

A9. F.V. Komissinski, K.I. Constantinian, <u>Y.V. Kislinskii</u>, G.A. Ovsyannikov// Electron transport in metal oxide superconducting heterojunctions. Low Temp. Phys. **30**, pp. 795 – 809 (2004).

А10. Г.А Овсянников, К.И Константинян, И.В. Борисенко, <u>Ю.В. Кислинский</u>, А.А. Ахумян, Н.Г. Погосян, Т.В. Захарян// Сигнальные и шумовые характеристики детекторов субмм. волн на джозефсоновских бикристаллических переходах из металлокосидных сверхпроводников. Радиотехника **8**,_стр. 117-122 (2005).

A11. G.A. Ovsyannikov, I.V. Borisenko, K.Y. Constantinian, <u>Y.V. Kislinskii</u>, A. A. Hakhoumian, N.G. Pogosuan, T. Zakaryan, N.F. Pedersen, J. Mygind, N. Uzunoglu, E. Karagianni// Bandwidth and Noise of Submillimeter Wave Cuprate Bicrystal Josephson Junction Detectors. IEEE Trans. on Appl. Supercond. **15**, pp. 533-536 (2005). Рецензируемая публикация в трудах конференции, входит в Перечень ВАК.

А12. <u>Ю.В. Кислинский</u>, Ф.В. Комиссинский, К.И. Константинян, Г.А. Овсянников, Т.Ю. Карминская, В.К. Корнев// Сверхпроводящий ток гибридных переходов металлооксидных сверхпроводников: размерная и частотная зависимости. ЖЭТФ **128**, стр. 575 – 585 (2005).

Ю.В. Кислинский, К.И. A13. И.В. Борисенко. Ф.В. Комиссинский, Константинян, Г.А. Овсянников, Т.Ю.Карминская, В.К. Корнев, И.И. Соловьев. «Гибридные Nb/Au/YBaCuO гетероструктуры из металлооксидных сверхпроводников»// Поверхность, Рентгеновские, Синхротронные И нейтронные исследования 2, стр. 48-54 (2006).

A14. V.K. Kornev, T.Y. Karminskaya, <u>Y.V. Kislinskii</u>, P.V. Komissinski, K.Y. Constantinian, G.A. Ovsyannikov// Dynamics of underdamped Josephson junctions with non-sinusoidal current-phase relation. Physica C **435**, pp. 27-30 (2006).

А15. Г.А. Овсянников, И.В. Борисенко, Ф.В. Комиссинский, <u>Ю.В. Кислинский</u>, А.В. Зайцев// Аномальный эффект близости в сверхпроводниковых оксидных структурах с антиферромагнитной прослойкой. Письма в ЖЭТФ **84**, стр. 320-324 (2006).

Ю.В. Кислинский, A16. Γ.Α. Овсянников, К.И. Константинян, Ф.В. Комиссинский, И.В. Борисенко, Т.Ю. Карминская, В.К. Корнев// Микроволновые динамические параметры джозефсоновских структур с нетривиальной ток-фазовой зависимостью. Радиотехника и электроника, 51, N9, стр. 1-9 (2006).

A17. G.A. Ovsyannikov, V.V. Demidov, <u>Y.V. Kislinski</u>, P.V. Komissinski, D. Winkler// "Conductivity and Antiferromagnetism of CaCuO2 Thin Films Doped by Sr", Physica C **460-462**, pp. 536-537 (2007).

A18. P. Komissinskiy, G.A. Ovsyannikov, I.V. Borisenko, <u>Y.V. Kislinskii</u>, K.Y. Constantinian, A.V. Zaitsev, D. Winkler// Josephson Effect in Hybrid Oxide Heterostructures with an Antiferromagnetic Layer, Phys. Rev. Lett. **99**, pp. 0170041-0170044 (2007).

A19. Ю.В. Кислинский, К.И. Константинян, Г.А. Овсянников, Ф.В. Комиссинский, И.В. Борисенко, A.B. Шадрин// "Магнитозависящий сверхпроводящий транспорт оксидных гетероструктурах с В антиферромагнитной прослойкой", ЖЭТФ 133, стр. 914-920 (2008).

A20. P.V. Komissinskiy, G.A. Ovsyannikov, K.Y. Constantinian, <u>Y.V. Kislinski</u>, I.V. Borisenko, I.I. Soloviev V.K. Kornev, E. Goldobin, D. Winkler// High-frequency dynamics of hybrid oxide Josephson heterostructures Physical Rev. B **78**, pp.

024501-024515 (2008).

А21. <u>Ю.В. Кислинский</u>, Г.А. Овсянников, К.И. Константинян, А.В. Шадрин, Ф.В. Комиссинский, Н.В. Кленов, В.К. Корнев// Гибридные джозефсоновские контакты с d-волновой симметрией параметра порядка для элементов квантовых вычислительных систем. Радиотехника **6**, стр. 10-15 (2009).

А22. А.В. Зайцев, Г.А. Овсянников, К.И. Константинян, <u>Ю.В. Кислинский</u>, А.В. Шадрин, И.В. Борисенко, Ф.В. Комиссинский// Сверхпроводящий ток в гибридных структурах с антиферромагнитной прослойкой. ЖЭТФ **137**, стр. 380-389 (2010).

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

1. Faley, M.I., U. Poppe, C.L. Jia, et al., 1997// IEEE Trans. on Appl. Super. 7, 2514.

- 2. Hiroi Z., Azuma M., Takano M., Takeda Y. 1993//Physica C 208, 286.
- 3.Halbritter, J., 1993// Physical Rev. B 48, 9735.
- 4. Глазман, Л.И., К.А. Матвеев, 1988// ЖЭТФ **94**, 332.
- 5. L.P. Gorkov, V.Z. Kresin, 2004// Physics reports 400, 149 (2004).
- 6. Kleiner, R., A.S. Katz, A.G. Sun, et al., 1996// Physical Rev. Lett. 76, 2161.
- 7. Zappe, H.H., 1973// Journal of Appl. Phys. 44, 1371.
- 8. Winkler, D., Y. M. Zhang, et al., 1994// Physical Rev. Lett. 72, 1260.
- 9. Likharev, K.K., 1986// Dynamics of josephson junctions and circuits. New York.

10. Komissinski, P.V., E. Il`ichev, G.A. Ovsyannikov, et al., 2002//Physica C 368, 271.

11. Komissinski, P.V., E. Il'ichev, G.A. Ovsyannikov, et al., 2002// Europhysics Lett. 57, 585.

- 12. Blonder, G.E., M. Tinkham, T.M. Klapwijk, 1982// Rev. B 25, 4515.
- 13. Vaknin D., Caignol E., Davis P.K. et al, 1989//Phys. Rev. B39, 9122.
- 14. Зайцев А.В, 2009//Письма в ЖЭТФ, **90**, 521.
- 15. Yoshida, J., T. Nagano, T. Hashimoto, 1996//. Physical Rev. B 53, 8623.
- 16. Xu, Y., D. Ephron, M.R. Beasley, 1995// Physical Rev. B 52, 2843.