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Abstract 

 
There are two types of intrinsic surface states in solids. The first type is formed on the surface of 

topological insulators. Recently, transport of massless Dirac fermions in the band of "topological" 
states has been demonstrated.  States of the second type were predicted by Tamm and Shockley long 
ago. They do not have a topological background and are therefore strongly dependent on the 
properties of the surface. We study the problem of the conductivity of Tamm-Shockley edge states 
through direct transport experiments. Aharonov-Bohm magneto-oscillations of resistance are found on 
graphene samples that contain a single nanohole. The effect is explained by the conductivity of the 
massless Dirac fermions in the edge states cycling around the nanohole. The results demonstrate the 
deep connection between topological and non-topological edge states in 2D systems of massless Dirac 
fermions. 

 
Introduction 

 
Nature is arranged such that electronic surface states (SSs) or interface states always appear on 

the surfaces of real crystals. Usually, they are induced by defects in the crystal surface, impurities, or 
contaminants and have a disordered character. Such "extrinsic" SSs lead to a finite density of states in 
the forbidden band of the crystal, which disturbs the functioning of many solid-state devices [1]. 

In principle, there may be other SSs that are not related to defects on the surface ("intrinsic” 
SSs). Since the pioneering works by Tamm [2] and Shockley [3], theoretical models predict that 
breaking of the crystal periodic potential at the surface can lead to the appearance of a two-
dimensional (2D) band of conducting electronic states near the surface [4]. These SSs are sometimes 
called Tamm states, Shockley states, or Tamm-Shockley states. Usually, they are detected using local 
methods (such as STM and ARPES) on atomically clean surfaces of a number of metals and 
semiconductors in ultrahigh vacuum. (In addition to electronic SSs, there is an optical analogue on the 
surface of photonic crystals [5, 6]). However, on real interfaces, such states typically do not exist (we 
do not consider the special SSs that appear only in a magnetic field and are associated with skipping 
orbits). General criteria for the existence of Tamm-Shockley states have not been determined. What is 
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clear is that these states are associated with both the features of the bulk band structure and the details 
of the electronic structure of the surface on the atomic scale. The important feature of intrinsic SSs is 
their ability to conduct electrical current. The high conductivity of SSs can lead to qualitatively new 
physical effects. Therefore, studies of their transport properties are currently of great interest. Other 
species of intrinsic SSs are related to the physics of topological insulators (TIs). In recent years, TI 
studies have been the fastest-growing area of modern physics [7, 8]. On the surface of a number of 
crystals (such as Bi2Se3) that have modified Dirac band structures, a 2D surface band of massless 
Dirac fermions (DFs) with a conical dispersion is formed. The cause of these bands is the existence of 
a special topological invariant, which is determined solely by the peculiarities of the bulk band 
structure of the TI [9]. An intriguing feature of these SSs is their transport properties: they are 
protected against backscattering by time-reversal symmetry, which results in their high conductance of 
electric current. The energy spectrum of these SSs has been investigated foremost by ARPES [10, 11, 
12]. Moreover, manifestations of these SSs have also been found in transport measurements. In 
[13,14], an Aharonov-Bohm (AB) -type effect in the resistance of a TI -- Bi2Se3 nanowire in a 
longitudinal magnetic field was observed. The possibility of observing AB magneto-oscillations in 
samples with non-ring geometries is related to the existence of conducting SSs, encircling the 
nanowire cross section [15]. 

Thirty years ago, it became clear that narrow-gap semiconductors and semimetals with 
relativistic band structures (such as Bi, BiSb, and PbTe) are convenient objects for the study of Tamm-
Shockley SSs. The charge carriers in these crystals are now referred to as massive DFs. For these 
crystals, the possibility of the formation of Tamm-Shockley-type SSs with a conical massless Dirac 
spectrum on the surfaces of a certain class was predicted [16]. In the model of "inversion 
heterojunction" [17, 18], the aforementioned specific class of surface can be attributed to the near-
surface inversion mass of the bulk DFs (see also [19]). We emphasise that in this case, the bulk band 
structure does not exhibit the topological invariant. 

Thus, at present, theory predicts the existence of two types of intrinsic SSs that are filled with 
massless DFs with conical spectra. The first type of SS is referred to as a topological SS. The latter is 
a type of Tamm-Shockley state that is referred to hereafter as a Tamm-Dirac (TD) state. The first type 
of SS has been detected in transport measurements, whereas the second has not. In 2D electron 
systems, edge states (ESs) of topological or TD type are analogous to the surface states. The present 
work is aimed at the detection of ESs of TD type through direct transport experiments. 

Two graphene systems were selected as convenient objects of study, graphene on silicon oxide 
and graphene-on-graphite. Ideal graphene realises a system of 2D massless DFs that has an energy 
spectrum of the conical type and is doubly degenerate in the valley quantum number [20]. The theory 
of ESs in graphene is the subject of several theoretical works [21, 22]. In fact, these works explored 
ESs of the TD type, even if this fact was not explicitly stated. General graphene half-planes with 
translational invariant edges were considered in [23, 24]. It was predicted that the TD states spectrum 
in the reduced valleys scheme consists of a pair of rays that emanate from the Dirac point; see below 
for details. This spectrum is somewhat reminiscent of the spectrum of the topological edge states in a 
2D TI of CdTe-CdHgTe type, although graphene is not a TI. It can be assumed that this similarity is 
not accidental and that the transport properties of these different edge states will also be similar. This 
assumption is the basic motivation of this work. 

 
Experiment 

 
Some indications of the existence of ESs in graphene have been demonstrated using the local 

STM technique [25, 26]; see also the Conclusions. However, until recently, there was no direct 
experiment regarding their contribution to transport measurements. In the present paper, we probe TD-
type ESs by measuring the Aharonov-Bohm (AB) effect. We consider that if the edge states--are 
conductive in nature, the AB effect will appear as resistance magneto-oscillations of graphene samples 
(graphene and graphene-on-graphite) that contain a single nanohole in a perpendicular magnetic field 
H. The phase and spectrum of the edge DFs that circulate around the hole will be controlled by the 
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magnetic flux through the hole. This effect can, in principle, lead to an H-periodic contribution to the 
magnetoresistance of the sample. 

Nevertheless, until recently, the AB effect in graphene has been observed only for ring-shaped 
samples [27-35] or on a lattice of nanoholes [36], in which the effect of a single hole was masked by 
the presence of the lattice and the effects of the fictitious magnetic field that is associated with elastic 
deformations [37]. Here, we observe for the first time the AB effect on graphene and graphite 
structures with a single nanohole. The latter permeates the entire structure. 

We use nano-thin graphite samples to avoid shunting of the surface graphene layers by the bulk. 
On the surface of graphite one often finds graphene flakes weakly bound to the surface where 
interlayer coupling is strongly suppressed. Several papers have noted the significant contribution of 
the surface graphene layer to the quantum oscillations of thin graphite. Thus, recent STM [38], 
cyclotron resonance [39] and Raman spectroscopy [40, 41] experiments have demonstrated that the 
surface layer of graphite is often represented as a graphene layer of an exceptional quality ("graphene-
on-graphite"). Therefore, we believe that the bulk of thin film of graphite contributes only to the 
background resistance, but oscillating part of the magnetoresistance is due to massless DFs in the top 
graphene layer. It is in agreement with the following observation: the period of these oscillations does 
not depend on the thickness of the graphite samples. 

Large-area flakes of natural graphite with thicknesses of as little as 30 nm were cleaved from 
large-crystal graphite using adhesive tape, and the adhesive layer was dissolved in acetone. In the 
second stage, the crystal was thinned using soft plasma etching down to the atomic thickness of 
approximately 1 nm [42]. Scanning Raman spectroscopy indicated high uniformity of the thinned 
crystals over the lateral size of hundreds of microns. For comparison, we also used commercial 
graphene samples. 

The samples were processed to form a Hall bar geometry. Nanoholes were introduced using two 
independent techniques, (1) the FIB technique with Ga-ions and (2) a helium ion microscope. We used 
the FIB technique to fabricate small holes with diameters of as little as d=35 nm (Fig. 1a). To produce 
the smallest hole, with diameter d=20 nm, we used the helium ion microscope (Figs. 1b and 1c). 

Shubnikov-de Haas oscillations were clearly observed in the thin graphite samples in weak 
fields. They exhibited inversed-field periodicity with a period of 0.2 T-1 and terminated at field 
strengths greater than ≈ 8T [35], when the energy of the first Landau level exceeds the Fermi energy. 

The results of resistance measurements performed in the magnetic quantum limit (H > 8 T) are 
shown in Fig. 2 for a structure of thin graphite with a single nanohole produced by FIB (Fig. 2a) and a 
graphene structure with a single nanohole produced by the helium ion microscope (Fig. 2b). The 
common feature of both structures was the presence of field-periodic oscillations at high magnetic 
fields. 

We compared the oscillation period for three single-nanohole samples of different diameters (see 
Table 1). Within the experimental uncertainty of approximately 10%, we found that the oscillation 
period ∆H for all samples corresponded to the flux quantisation in a hole 

 
0

2 4/ Φ=∆ DHπ  (1) 

where 0 /hc eΦ =  is the flux quantum and D is the diameter of the hole. This result is expected if 
one considers that the main contribution to the effect comes from the carriers with orbits that are 
localised very near the edge of the hole. Such a periodicity was observed for the first time in ring-
shaped samples of graphene by S. Russo et al. [27]. We can therefore attribute the oscillations to 
quantum interference of massless DFs in a band of conducting edge states. 

An interesting question is why the orbits of the DFs that contribute to the oscillations are so 
close to the edge. Actually, there are conventional skipping cyclotron orbits of DFs around the 
nanohole. However, they should not exhibit the interference effect. The reason is that skipping orbits 
circle around the hole in the same direction independent of valley index. In contrast, TD states in two 
valleys revolve in opposite directions. This leads to emergence of resonances in intervalley 
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backscattering, which will be explained below, see section “Theory and comparison with experiment”. 
Therefore, only TD states that exist close to the nanohole edge may cause the oscillations. 

TD-type edge states can play the role of a ring that keeps carriers near the edge of the hole. We 
can estimate the effective width of this type of effective ring. Table 1 presents a comparison of the 
geometrical size of the hole and the size of the effective 1D ring. One can see that the radius of the 
effective ring is always greater the geometrical radius and the difference is approximately 2 nm 
(within the experimental accuracy). This value gives an experimental estimate of the width of the 
effective ring that is associated with the edge states, i.e., the penetration depth of the edge states. 

We now discuss the temperature dependence of the amplitude of the oscillations. For 
experiments with graphene rings, the AB oscillations have been observed only below the temperature 
range of liquid helium [35]. The effect on nanoholes persists to much higher temperatures. For 
example, Fig. 3a shows the oscillating component of the magnetoresistance extracted from the data of 
Fig. 2b by subtracting the monotonic part. One can see that oscillations persist up to temperatures as 
high as 50 K. The four main peaks marked by the upper arrows are clearly observed at field strengths 
of greater than 10 T, when the magnetic quantum limit is realised (i.e., the energy of the first Landau 
level exceeds the Fermi energy). Their spacing H∆  corresponds to the flux quantum per nanohole 
area, following Eq. 1. 

Fig. 3b shows the temperature dependence of the height of one of these peaks A observed at 
18H = T. This figure clearly shows an exponential dependence, ( )0exp /A T T∝ , with 0 17T ≈ K. 

Weak T-damping of oscillations is consistent with the theory of edge states that is discussed below. 
The next important point revealed from the experiment is the existence of the relatively small 

peaks that are marked in Fig. 3a by upward arrows. The two series of peaks can be considered as 
shifted by π series with the same 0Φ  periodicity or as series of oscillations with periodicities 0Φ  and 

0 / 2Φ . We can extract the temperature dependence of this type of oscillation only from the peak at 
10H = T, which is more or less clearly resolved. A comparison of the temperature dependence of the 

peaks of these two different series demonstrates the same exponential dependence, thus indicating 
their common origin. 

One can consider that the characteristic temperature 0T is related to the typical energy of the edge 
state as 0 0 0 /kT E v R= =  . This relationship gives an estimate for 0v , 6

0 5 10v = ⋅ cm/s. To compare the 
temperature dependences for samples #2 and #3, we found that for nanoholes of smaller diameter, the 

0T value increases approximately proportional to 1/ effR . 
 

Theory and comparison with experiment 
 

The band structure of graphene consists of two almost-independent cones, which are often called 
valleys. Let us colour them red and blue for convenience, as indicated in Fig. 4. The electronic 
structure of graphene is modified near an edge such that TD-type edge states can appear. The wave 
function of carriers at the edge state is exponentially localised near the interface. Neglecting the inter-
valley scattering, one can characterise the edge [23, 24] by a real phenomenological parameter a. This 
parameter is included in the boundary conditions for the Weyl-Dirac equations describing the massless 
DFs. In fact, real atomic structure of graphene edge around the hole is unknown. In frames of our 
phenomenological approach [23] the edge parameter a should depend on the tangential DF coordinate 
along the edge, but we simulate the edge by an average value of this parameter. This approximation 
corresponds to an average dynamic of the edge states circling around the hole. The value of а can be 
determined by comparison with experiment. However, a comparison with the microscopic model 
calculations [24] indicates that the value is small: |a| << 1. Below, we will use this smallness. 

For a half-plane graphene sample, the spectrum of the edge states in a zero magnetic field is [23, 
24]:  

|| || ||( ) 2 , 0E k av k kτ τ τ= ≥  
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(2) 

(see Fig. 4a). Here, ||k  is the one-dimensional electron momentum along the edge measured from 

the centres of the valleys, 810ν = cm/s is the effective speed of light in the bulk graphene spectrum, 
and the index 1τ = ±  enumerates the valleys in graphene. For small a, the localisation length of the 
edge state at the Fermi level is 1 1T r bx k k= = . A comparison with experiment, which is presented 
in Table 1, yields the estimate 2Tx = nm. 

Edge states also exist at the edges of a round hole (“antidot”) of radius R  in an infinite sheet of 
graphene. DFs trapped in the edge states behave like electrons in a narrow ring ( Tx R<< ), which 
causes us to expect manifestations of the Aharonov-Bohm effect. The finite perimeter of the antidot 
leads to a quantisation of the tangential component of the momentum. The discrete edge states are thus 
characterised by half-integer total angular momenta jτ ( 0jττ > ). In the quasiclassical approach, the 
spectrum of these edge states is obtained from (2) by substituting ||k  for j Rτ . Although these states 
are quasistationary in the absence of a magnetic field, their finite lifetime (due to their decay into the 
bulk states) is large in the actual case of small a. 

In a magnetic field H , the spectrum of the TD edge states in an antidot has quasiclassical 
asymptotes at |a| << 1: 

02 ( / / 2)vE a j
Rτ ττ τ= +Φ Φ −


 (3) 

where 2H RπΦ = , 0 hc eΦ =  and the half-integer jτ  satisfies the condition ( )0 0jττ +Φ Φ > . 
Under the conditions of our experiment, the asymptotes given by (3) are valid. Knowing 
2Tx = nm and the value of the field corresponding to the last Shubnikov-de Haas oscillation, we can 

estimate from Eq. (1) the absolute value of the parameter а to be |a|=0.05. 
Bulk DFs move on trajectories in smooth random potential (Fig.4d). If the trajectory is close 

enough to the antidot, bulk DFs can tunnel to the edge state at the antidot.Then a fermion in the edge 
state moves periodically around the antidot (clockwise in one valley and counterclockwise in  
another), thereby acquiring additional Aharonov-Bohm phase in a magnetic field. Its wave function 
satisfies the Bloch theorem. The spectrum of the edge states has a band character, and the magnetic 
flux plays the role of an effective quasi-momentum. Intra-valley scattering does not essentially change 
this picture. Consider weak inter-valley scattering, which potentially acts as a periodic potential. This 
leads to the formation of energy gaps in the band spectrum in Fig. 4b if the following conditions of 
inter-valley ("blue-red") resonance are fulfilled: 

0 2
j j+ −+Φ

=
Φ

 
(4) 

These resonances lead to a strong backscattering, which, in turn, according to the Landauer 
formula, results in the negative peaks in the conductance. Consider the magnetic quantum limit, when 
the AB oscillations are observed. Then, the Fermi level is close to the Dirac point, which fluctuates 
strongly in space because of the formation of "puddles" of electrons and holes [43]. If the spatial scale 
of these fluctuations is comparable to the size of the antidot, and if the energy scale is comparable to 
the energy of the perimetric quantisation of the edge states, the resonance (4) does not depend on the 
position of the Fermi energy and its temperature smearing. This qualitatively explains the weak 
temperature dependence of the observed AB oscillations. 

As demonstrated above, the velocity of the edge Dirac fermions extracted from the experimental 
temperature dependence of the amplitude of oscillations is 20 times less than that of the bulk fermions. 
This difference may be explained by considering the smallness of the edge parameter, |a|=0.05. This 
value is consistent with the independent estimate of а made above. 
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With the magnetic field variation, the energies of the TD states in the red valley ( ),E j+ +Φ  
periodically coincide with the TD energies in the blue valley ( ),E j− −Φ  with 0 / 2Φ  periodicity. 
Because j  takes only half-integer values, it follows from (4) that the flux 0/Φ Φ can accept either 
integer or half-integer values. The first condition is responsible for the main series of oscillations, 
whereas the second one results in the complementary series. 

 
Conclusions 

 
In summary, we found that graphene-on-graphite and graphene nanostructures that contain single 

nanoholes exhibit field-periodic resistance oscillations with magnetic flux periodicity that is 
approximately equal to the flux quantum per nanohole area. This result is considered to be the 
Aharonov-Bohm effect due to conducting states localised near the edge of the hole. Such states, which 
are called Tamm-Dirac states, are manifestation of Tamm-Shockley edge states in two-dimensional 
systems of massless Dirac fermions. From the experiment, we have obtained an estimate of the values 
of the penetration depth and the velocity of these states. The proposed mechanism of the oscillations is 
based on resonant inter-valley back-scattering of the Tamm-Dirac states.  

Recently, a nanohole array in nanoperforated graphene was studied using gate voltage 
spectroscopy in the absence of a magnetic field [44]. Discrete levels that are presumably related to the 
edge states were observed. However, the most important distinctive feature of the Tamm-Shockley 
states -- the ability to conduct electrical current – has not been directly demonstrated. Moreover, the 
effects of the mutual influence of neighbouring nanoholes in the array do not have an unambiguous 
interpretation. Therefore, the question of the origin of the detected levels remained open. 

In this study, we obtained the first direct evidence for band conduction of Tamm-Shockley-type 
edge states. In graphene, the Tamm-Dirac edge states are populated by massless Dirac fermions, the 
low temperature conductivity of which is metallic. The conducting properties of these non-topological 
states are similar to the properties of topological edge states in topological insulators that are known in 
the literature. This analogy is apparently connected to the similarity of the edge spectra of massless 
Dirac fermions in these two different systems. 
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Table 1. 
 
The table includes the following samples: #1 – graphene structure with a hole produced by HIM, 

#2 – thin graphite structure with a hole produced by FIB, and #3 – thin graphite structure with a hole 
produced by HIM. The thicknesses of the thin graphite structures were varied in the range of 30-50 
nm. The parameter Deff was calculated using Eq. (1). 

Sample No        ∆H, T          Dgeom., nm      Deff., nm        ( ) / 2geom effD D− , nm 

     #1                     9.0                20±1         24±0.1                 2.0±0.5                 
     #2                     3.2                37±2         41± 0.2                2.0±1.0   
     #3                     6.0                25±1         30±0.2                 2.5±0.5 
 

 
 
Figures 
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Figure 1. Experimental realisation of graphene nanohole structures. 
Single hole produced by FIB (SEM image, a) and by the helium ion microscope (SHIM image, b, 

c) in graphene (b) and thin graphite (a, c). 
 
 

 
Figure 2.  Aharonov-Bohm resistance magneto-oscillations. 
Field-periodic resistance oscillations for a) a thin graphite single nanohole (D=37 nm) structure 

made by FIB  at various temperatures: T=1.5, 4.2, 10, 15, 20, 30, 45K (from top to bottom) and b) a 
graphene structure with a single nanohole made using a helium ion microscope, 20D = nm, T=4.2 K. 
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Figure 3. Temperature behaviour of magneto-oscillations for sample #2. 
a) Oscillating part of the resistance at various temperatures. The downward arrows 

indicate the main series, which corresponds to 0 1/ 2n↓Φ = Φ + (where n is an integer), whereas the 
upward arrows mark an additional series 0n↑Φ = Φ . b) Temperature dependences of the oscillation 
amplitude for 0/ 5.5Φ Φ =  (red line) and 3 (blue line). 
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Figure 4. Edge states around the graphene nanohole 
a) The red and blue rays are the Tamm-Dirac states contra-propagating along the graphene 

semi-plane. There are two Tamm-Dirac states at the Fermi level: rk  in the red valley with positive 
velocity and bk  in the blue valley with negative velocity. The bulk continuum states are shadowed.  

b) Spectrum of the Tamm-Dirac states in an antidot for different ,j j+ −  as a function of the 
magnetic flux that passes through the antidot area. The spectrum has a band character, and the flow 
through the antidot plays a role of quasi-momentum in the reduced zone scheme. The red (blue) colour 
corresponds to the valley with 1τ = +  ( 1τ = − ), 0 2E a v R≈  . The red-blue scattering results in band 
gaps (vertical bold lines). Gaps are formed by anticrossing of red and blue edge states with angular 
momenta j+  and j− . Gap values are denoted by the index ( ) 2j j j+ −= + . 

c) Inter-valley contribution to the conductivity in the reduced zone scheme. The peaks 
correspond to resonant red-blue back-scattering. The two series of peaks are connected by the passing 
of the magnetic flux through the centre and boundary of the zone shown in panel b. 

d) Contra –propagating trajectories of the orbit centres for different valleys for the zero Landau 
level (N=0) in a smooth-impurity potential. One of the orbits is close to the antidot and can experience 
inter-valley back-scattering at the above-mentioned values of the flux. 


