02

Границы раздела в сверхпроводниковых гибридных гетероструктурах с антиферромагнитной прослойкой

© К.И. Константинян¹, Ю.В. Кислинский¹, Г.А. Овсянников^{1,2}, А.В. Шадрин^{1,2}, А.Е. Шейерман¹, А.Л. Васильев³, М.Ю. Пресняков³, Ф.В. Комиссинский^{1,4}

 ¹ Институт радиотехники и электроники им. В.А. Котельникова РАН, Москва, Россия
 ² Чалмерский технологический университет, Гётеборг, Швеция
 ³ НИЦ "Курчатовский институт", Москва, Россия
 ⁴ Дармштадтский университет, Дармштадт, Германия
 E-mail: karen@hitech.cplire.ru

(Поступила в Редакцию 29 августа 2012 г.)

Проведены структурные, рентгеновские и электрофизические исследования гибридных сверхпроводниковых гетероструктур с прослойкой из купратного антиферромагнетика $Ca_{1-x}Sr_xCuO_2$ (CSCO), где верхним электродом был Nb/Au, нижним — YBa₂Cu₃O_{7- δ} (YBCO). Экспериментально показано, что при эпитаксиальном росте двух купратов YBCO и CSCO образуется граница раздела, на которой происходит обогащение носителями прослойки CSCO на глубину порядка 20 nm. При этом проводимость обогащенной области CSCO, оказывается близкой к металлической, в то время как пленка CSCO, осажденная на подложку из NdGaO₃ является моттовским изолятором с прыжковой проводимостью.

Работа выполнена при поддержке ОФН РАН, Министерством образования и науки РФ, грантом Президента России: Ведущая научная школа НШ-2456.2012.2, проектами РФФИ № 11-02-01234а и 12-07-31207мол_а, программой Висби Шведского института.

1. Введение

В последнее время большой интерес вызывают процессы электронного транспорта, происходящие на границе сверхпроводника (S) с магнетиком (M), где вследствие взаимодействия сверхпроводящих и магнитных корреляций возникает ряд нетривиальных физических явлений [1-4]. Следует заметить, что значительная часть экспериментальных исследований S/M-границ проводилась на металлических или поликристаллических пленках [3-5], в которых нивелируется влияние кристаллической структуры контактирующих материалов. Существенно меньшая по сравнению с металлами длина когерентности оксидных материалов значительно усложняет изготовление оксидных сверхпроводниковых структур с магнитными прослойками. Тем не менее аномальный эффект близости в купратных сверхпроводниках наблюдался в лантановых структурах [6], а в гибридных мезагетероструктурах с антиферромагнитной прослойкой был экспериментально измерен сверхпроводящий ток, имеющий джозефсоновскую природу [7,8]. Определяющее значение для наблюдения перечисленных выше явлений отводится кристаллическим и электрофизическим характеристикам границ раздела контактирующих материалов. В настоящей работе приводятся результаты структурных исследований на просвечивающем электронном микроскопе, рентгеновском дифрактометре, а также электрофизические характеристики гибридных S-M-S' мезагетероструктур (МГС), в которых в качестве S выступал сверхпроводник с s-симметрией параметра порядка — тонкопленочная двухслойная структура Nb/Au, в качестве S'-электрода использовался купратный сверхпроводник YBa₂Cu₃O_{7- δ} (YBCO) с доминирующей d-симметрией параметра порядка, M-прослойкой служил антиферромагнетик Ca_{1-x}Sr_xCuO₂ (CSCO) (x = 0.15 или 0.5).

2. Мезагетероструктуры, структурные измерения

Сверхпроводниковая пленка ҮВСО эпитаксиально осаждалась методом лазерной абляции при температуре 700-800° С на подложку (110)NdGaO₃ (NGO). Критическая температура YBCO составляла $T_C = 88 - 89$ K. Магнитная М-прослойка изготавливалась из купрата $Ca_{1-x}Sr_xCuO_2$ (x = 0.15 или 0.5), являющегося гейзенберговским антиферромагнетиком. Тонкая (5–50 nm) пленка М-прослойки эпитаксиально выращивалась поверх ҮВСО в той же вакуумной камере при высокой температуре, а потом покрывалась тонким (20–30 nm) слоем золота после охлаждения до комнатной температуры [7]. Купратные пленки YBCO и CSCO обладают близкими кристаллическими параметрами и хорошей химической совместимостью. В ҮВСО параметр базовой плоскости a = 0.3859 nm близок к *a*-параметру CSCO a = b = 0.385 nm. Параметр c = 0.318 - 0.323 nm

Параметр	$\begin{array}{c} \text{CSCP} \\ (x = 0.15) \end{array}$	CSCO/YBCO (x = 0.15)		$\begin{array}{c} \text{CSCO} \\ (x = 0.5) \end{array}$	CSCO/YBCO (x = 0.5)	
	(002) CSCO	(002)CSCP	(007)YBCO	(002)CSCP	(002)CSCO	(007)YBCO
$a_{\perp}, \operatorname{nm} \Delta \omega$	0.321 0.07	0.322 0.2*	1.169 0.2*	0.333 0.4	0.336 0.5*	1.177 0.5*

Кристаллические параметры и ширины кривых качания (a_{\perp} — межплоскостное расстояние в направлении оси c; $\Delta \omega$ — ширина кривой качания на уровне полувысоты).

*Оценка
 $\Delta \Omega$ из 2 θ/ω -скана без учета толщины пленки.

в *М*-прослойке изменяется в зависимости от содержания Sr (x = 0.15 или 0.5) [9]. Данные по межплоскостному (в направлении оси *c*) расстоянию a_{\perp} приведены в таблице. Осаждение поверх *М*-прослойки сверхпроводниковой двухслойной структуры Nb/Au позволяет получить джозефсоновские переходы, СВЧ- и магнитные свойства которых исследовались ранее [10,11]. Топология джозефсоновских переходов в МГС в виде квадрата с линейными размерами $L = 10-50 \,\mu$ m формировалась методами ионно-лучевого и реактивного травления.

Образцы для исследования поперечного сечения гетероструктуры изготавливались в электронно-ионном микроскопе Helios фирмы FEI (США) с помощью фокусированного ионного пучка энергией $30 \, \text{kV}$ в начале и $2 \, \text{kV}$ в конце процесса. Электронно-микроскопические исследования проводились на просвечивающем сканирующем электронном микроскопе TITAN 80-300, оборудованном энергодисперсионным рентгеновским микроанализатором (ЭДРМА), EDAX (США), энергетическим фильтром GIF (Gatan, США) и высокоугловым темнопольным детектором электронов (Fischione, США)

Рис. 1. Светлопольное изображение поперечного сечения гетероструктуры Au/CSCO/YBCO/NGO, полученное на просвечивающем электронном микроскопе. На вставке в увеличенном виде показан участок YBCO-пленки.

Рис. 2. Результаты энергодисперсионного рентгеновского микроанализа поперечного сечения участка МГС вблизи границы СSCO/YBCO.

при ускоряющем напряжении 300 kV. Светлопольное изображение поперечного сечения гетероструктуры, полученное с помощью просвечивающего электронного микроскопа, показано на рис. 1. Четко видны границы разделов YBCO/NGO и Au/CSCO. На вставке к рисунку в увеличенном виде показан участок пленки YBCO. Результаты микроанализа состава (ЭДРМА), приведенные на рис. 2, свидетельствуют о наличии Са и Sr в интервале 175–195 nm, т.е. в диапазоне толщин *M*-прослойки, оцененной по числу импульсов лазерной абляции с помощью калибровки скорости роста пленки CSCO.

3. Электрофизические характеристики

На рис. 3 показаны зависимости удельного сопротивления ρ от температуры пленок CSCO с x = 0.15 и 0.5, осажденных на подложку NGO. Зависимости $\rho(T)$ соответствуют трехмерной прыжковой проводимости с показателем степени при обратной температуре 1/4

$$\ln \rho(T) = \ln \rho_0 + (T_0/T)^{1/4}, \tag{1}$$

где $T_0 = 24/(\pi k_B N_F a^3)$ — экспериментальный параметр [12], N_F — плотность состояний на уровне Ферми,

Рис. 3. Температурные зависимости удельного сопротивления пленок CSCO (x = 0.5 и x = 0.15). Пунктиром показаны экстраполяции $\rho \sim T^{1/4}$. На вставке те же зависимости приведены в линейном масштабе по температуре.

Рис. 4. Температурная зависимость сопротивления МГС с толщиной прослойки 20 nm и $L = 10 \,\mu$ m. На вставке показана зависимость характерного сопротивления R_NA от толщины прослойки СSCO (x = 0.5) при T = 4.2 К. Темные символы выделяют случай отсутствия магнитной прослойки. Крестики соответствуют МГС с $L = 10 \,\mu$ m, кружки — с $L = 20 \,\mu$ m, треугольники — с $L = 30 \,\mu$ m, ромбы — с $L = 40 \,\mu$ m, пентагоны — с $L = 50 \,\mu$ m.

а — радиус локализации носителей, k_B — постоянная Больцмана. Для пленки CSCO с x = 0.5 получаем $T_0 = 3 \cdot 10^6$ K, а удельное сопротивление ρ при низких температурах составляет $10^4 \Omega \cdot \text{сm. Следует отметить,}$ что во всех исследованных пленках CSCO не было обнаружено металлического хода проводимости.

Сопротивление (*R*) МГС представляет собой сумму сопротивлений YBCO-электрода, *M*/YBCO-границы, *M*-прослойки, барьера между *M*-прослойкой и Au, электрода Nb/Au: *R_Y*, *R_{M/Y}*, *R_M*, *R_b*, *R*_{Nb/Au} соответственно. На рис. 4 представлена температурная зависимость сопротивления R(T) МГС с $d_M = 20$ nm, $x = 0.5, L = 10 \,\mu$ m. Удельное сопротивление металлического электрода Nb/Au при комнатной температуре составляет величину порядка $ho_{
m Nb/Au} = 10^{-5} \, \Omega \cdot {
m cm}$ при толщине $d_{\text{Nb/Au}} = 120 \,\text{nm}$, поэтому при температурах ниже критической температуры ҮВСО-электрода (T < T_C) вклад сопротивления R_{Nb/Au} мал. При температурах ниже критической температуры электрода Nb/Au $T_{C'} = 8 - 9$ К сопротивление $R_{\text{Nb/Au}} = 0$. При температурах $T > T_C$ зависимость R(T) МГС аналогична зависимости $R_Y(T)$ YBCO-пленки, измеренной отдельно. Видно, что с уменьшением температуры после перехода YBCO в сверхпроводящее состояние (в приведенном случае при $T_C \cong 62 \,\text{K}$) при $T_{C'} < T < T_C$ наблюдается участок R(T) с практически неизменной величиной сопротивления $R = R_{M/Y} + R_M + R_b$. Принимая во внимание эпитаксиальный рост двух купратов CSCO/YBCO и близкие параметры их кристаллических решеток, полагаем, что сопротивление $R_{M/Y}$ мало́ по сравнению с R_b . Соответственно на светлопольном изображении (рис. 1) хорошо виден цветовой контраст границ CSCO/Au, в то время как граница YBCO/CSCO слабо отличима. На вставке к рис. 4 показана зависимость R_NA от толщины *d_M* для МГС, в которых наблюдается эффект Джозефсона (*R_N* — сопротивление в нормальном состоянии, измеренное при напряжении $V \sim 1.5 \,\mathrm{mV}$ $(T = 4.2 \,\mathrm{K})$, $A = L^2$ — площадь МГС). Из данных, представленных на рис. 3, видно, что удельное сопротивление ρ_M автономной CSCO пленки (x = 0.5) растет с понижением температуры. При температуре *T* = 4.2 К ожидаемый вклад в $R_N A = \rho_M d_M$ МГС от сопротивления пленки СSCO должен составить величину более $10^4 \mu \Omega \cdot cm^2$. Однако для МГС с относительно тонкой прослойкой $d_M < 20 \, {\rm nm}$ таких больших значений R_NA не наблюдалось. Более того, по сравнению с автономной пленкой CSCO сопротивление МГС в интервале $T_{C'} < T < T_C$ слабо зависит от температуры. Следовательно, основной вклад в сопротивление МГС при низких температурах и малых толщинах прослойки вносит граница CSCO/Au. Как видно из зависимости на вставке к рис. 4, характерное сопротивление *R_NA* образцов экспоненциально растет с увеличением d_M : $R_N A = A_R \exp(d_M/a_R)$. Подгоночные параметры были вычислены по методу наименьших квадратов и составили $a_R = 8.5 \,\mathrm{nm}, A_R = 0.184 \,\mu\Omega \cdot \mathrm{cm}^2$. Полученные данные показывают, что при толщине прослойки $d_M < 40 \,\mathrm{nm}$ значения $R_N A$ меньше, чем в структурах без М-прослойки ($d_M = 0$). Если бы основной вклад в сопротивление МГС был от сопротивления СSCO прослойки, то величина R_NA линейно увеличивалась бы с d_M , однако этого не наблюдается в эксперименте.

Дополнительную информацию об электрических свойствах прослойки и границы YBCO/Au можно извлечь из зависимости изменения емкости (*C*) МГС от толщины d_M . Вольт-амперные характеристики (BAX) джозефсоновских МГС при T = 4.2 К обнаруживали гистерезис (см. вставку к рис. 5). Емкость определялась из величины параметра МакКамбера $\beta_C = 4\pi e I_C R_N^2 C/h$, который

Рис. 5. Зависимость нормированной толщины барьра (d_0/ε) от толщины прослойки (d_M) Са_{1-x}Sr_xCuO₂ для x = 0.5. Линиями показаны аппроксимационные зависимости. На вставке приведена ВАХ МГС с толщиной прослойки Са_{1-x}Sr_xCuO₂ $d_m > 20$ nm. Стрелки соответствуют критическому току и току "возврата".

однозначно связан с отношением тока возврата к критическому току ВАХ джозефсоновского перехода [13]. Для планарной геометрии МГС емкость $C = \varepsilon_0 \varepsilon A/d_0$, где ε_0 — диэлектрическая проницаемость вакуума, ε — диэлектрическая проницаемость барьерного слоя CSCO/Au, d_0 — толщина барьера. На рис. 5 показана зависимость d_0/ε от толщины d_M CSCO-прослойки. Видно, что при $d_M \leq 20$ nm изменение емкости незначительно и величина d_0/ε (для серий МГС с $d_M = 12$ и 20 nm) в пределах ошибки совпадает со случаем гетероструктур без прослойки: $d_0/\varepsilon = 0.35 \pm 0.2$ nm.

Наличие гистерезиса в гетероструктурах без прослойки [14] свидетельствует об образовании барьерного слоя на границе YBCO/Au, что определяет величину емкости между электродами YBCO и NbAu. В случае же МГС барьерный слой образуется на границе CSCO/Au. Проанализируем, какую роль при этом играет слой CSCO. При $d_M > 20 \,\mathrm{nm}$ наблюдается рост d_0/ε на нескольких сериях МГС. По методу наименьших квадратов для участка роста получаем линейную зависимость $d_0/\varepsilon = (0.36 \pm 0.05)[d_M - (20 \pm 4)]$ nm. Такая зависимость d_0/ε от d_M описывается моделью, по которой из-за влияния YBCO на границе CSCO/YBCO образуется проводящий слой, который не вносит вклада в емкость C. Над проводящим слоем CSCO (толщиной до 20 nm) располагается слабопроводящая часть CSCO-прослойки толщиной d_0 , определяющая емкость МГС. Отметим, что, хотя характерные сопротивления *R_NA* МГС и гетероструктур без *М*-прослойки различаются почти на порядок (см. вставку к рис. 4), величины d_0/ε практически равны при $d_M < 20 \,\mathrm{nm}$. Ранее возникновение проводящего слоя (толщиной до 50 nm) наблюдалось для других купратов на границе PrBa₂Cu₃O₇/YBCO [15]. Известно, что в тонких пленках

CSCO из-за нестехиометрии по кислороду может происходить перестройка электронной подсистемы [16-18]. Как показано в [16], несмотря на слабую диффузию катионов (1-2 атомных ячейки), изменение проводимости контактирующих материалов на границе раздела двух оксидов может быть вызвано электронной перестройкой, как это происходит на границе сильно коррелированного моттовского изолятора и изолятора со щелью в спектре возбуждений [16]. Зарядовая перестройка из-за уменьшения содержания кислорода в пленке в процессе ее роста [18] может привести к значительному изменению электронной подсистемы слоя CSCO и переходу в металлическое состояние. В пользу предположения, что основной вклад в сопротивление МГС вносит граница CSCO/Au, свидетельствуют различие проводимости и Ферми-скоростей контактирующих материалов, их разные кристаллографические параметры, а также наличие дефектов на границе.

При относительно больших $d_M > 70$ nm происходило резкое изменение R(T) МГС (см. вставку к рис. 6). В этом случае вклад сопротивления барьера R_b уже невелик по сравнению с R_M , и сопротивление CSCOпленки дает экспоненциальный (с увеличением d_M) вклад в R_NA .

В интервале температур T = 70-43 К наблюдалась зависимость, которая описывается (1), что характерно для прыжковой проводимости. Величина подгоночного параметра $T_0 = 7 \cdot 10^5$ К оказалась в несколько раз меньше, чем для автономной пленки CSCO. Если длина прыжка $2r \cong a (T_0/T)^{1/4}$ сравнивается с толщиной барьера d_0 , то может произойти смена механизмов проводимости МГС, например переход от прыжковой

Рис. 6. Температурная зависимость характерного сопротивления МГС (x = 0.5, $d_M = 80$ nm, $L = 30 \,\mu$ m). Стрелкой показана температура $T_{\rm VRH}$, ниже которой находится интервал температур, соответствующий механизму проводимости (1) (пунктирная линия), $T_0 = 7 \cdot 10^5$ К. На вставке показана температурная зависимость (в линейном масштабе) сопротивления той же МГС.

проводимости к туннелированию через локализованные состояния [12,19]. На рис. 6 эта температура, при которой длина прыжка 2r становится равной d_0 и происходит смена механизмов проводимости, обозначена как T_{VRH} . Из данных, представленных на рис. 6, имеем $T_{\text{VRH}} = 43$ К, и для $d_M = 80$ nm, учитывая зависимость d_0/ε от d_M (рис. 5), получаем $d_0 = 60$ nm и радиус локализации $a \cong 5$ nm. Используя значения T_0 и a из соотношения $T_0 = 24/(\pi k_B N_F a^3)$, определяем плотность состояний $N_F = 10^{18} \text{eV}^{-1} \cdot \text{cm}^{-3}$, что существенно ниже величины N_F , наблюдаемой в PrBa₂Cu₃O₇ [15].

4. Заключение

Таким образом, в результате структурных, рентгеновских и электрофизических исследований гибридных мезагетероструктур на основе купратного сверхпроводника (YBCO) с прослойкой из купратного антиферромагнетика (CSCO) установлено, что при эпитаксиальном росте двух купратов YBCO и CSCO образуется граница раздела с высокой прозрачностью. В автономном случае, когда пленка CSCO нанесена непосредственно на подложку, материал прослойки является моттовским изолятором, имеющим прыжковую проводимость, однако на границе YBCO/CSCO происходит допирование пленки CSCO носителями на глубину порядка 20 nm до состояния, близкого к металлическому, что приводит к уменьшению удельного сопротивления МГС с СSCO-прослойки по сравнению с удельным сопротивлением автономной CSCO-пленки на два порядка. При толщинах прослойки выше 70 nm сопротивление МГС в определенном диапазоне температур имеет зависимость, типичную для прыжковой проводимости, по которой удается оценить характерную температуру прыжковой проводимости и плотность состояний на уровне Ферми для прослойки.

Авторы благодарны И.В. Борисенко, В.В. Демидову, А.В. Зайцеву, А. Калабухову, И.М. Котелянскому, А.М. Петржику за помощь в проведении эксперимента и полезные обсуждения.

Список литературы

- [1] A. Buzdin. Rev. Mod. Phys. 77, 935 (2005).
- [2] F.S. Bergeret, A.F. Volkov, K.B. Efetov. Rev. Mod. Phys. 77, 1321 (2005).
- [3] V.V. Ryazanov, V.A. Oboznov, A.Y. Rusanov, A.V. Veretennikov, A.A. Golubov, J. Aarts. Phys. Rev. Lett. 86, 2427 (2001).
- [4] M. Flokstra, J. Aarts. Phys. Rev. B 80, 144513 (2009).
- [5] C. Bell, E.J. Tarte, G. Burnell, C.W. Leung, D.-J. Kang, M.G. Blamire. Phys. Rev. B 68, 144 517 (2003).
- [6] A. Gozar, G. Logvenov, L.F. Kourkoutis, A.T. Bollinger, L.A. Giannuzzi, D. Muller, I. Bozovic. Nature 455, 782 (2008).

- [7] А.В. Зайцев, Г.А. Овсянников, К.И. Константинян, Ю.В. Кислинский, А.В. Шадрин, И.В. Борисенко, Ф.В. Комиссинский. ЖЭТФ 137, 380 (2010).
- [8] Г.А. Овсянников, К.И. Константинян. ФНТ 38, 423 (2012).
- [9] Г.А. Овсянников, С.А. Денисюк, И.К. Бдикин, ФТТ 47, 417 (2005).
- [10] Ю.В. Кислинский, К.И. Константинян, Г.А. Овсянников, Ф.В. Комиссинский, И.В. Борисенко, А.В. Шадрин. ЖЭТФ 133, 914 (2008).
- [11] G.A. Ovsyannikov, K.Y. Constantinian, Yu.V. Kislinski, A.V. Shadrin, A.V. Zaitsev, A.M. Petrzhik, V.V. Demidov, I.V. Borisenko, A.V. Kalabukhov, D. Winkler. Supercond. Sci. Technol. 24, 055012 (2011).
- [12] Y. Xu, D. Ephron, M.R. Beasley. Phys. Rev. B 52, 2843 (1995).
- [13] H.H. Zappe. J. Appl. Phys. 44, 1371 (1973).
- [14] P.V. Komissinskiy, G.A. Ovsyannikov, K.Y. Constantinian, Y.V. Kislinski, I.V. Borisenko, I.I. Soloviev, V.K. Kornev, E. Goldobin, D. Winkler. Phys. Rev. B 78, 024 501 (2008).
- [15] M.I. Faley, U. Poppe, C.L. Jia, K. Urban. IEEE Trans. Appl. Supercond. 7, 2514 (1997).
- [16] S. Okamoto, A. Millis. Nature **428**, 630 (2004).
- [17] J.C. Nie, P. Badica, M. Hirai, J.Y. Kodama, A. Crisan, A. Sundaresan, Y. Tanaka, H. Ihara. Physica C 388–389, 441 (2003).
- [18] S.J.L. Billinge, P.K. Davies, T. Egami, C.R.A. Catlow. Phys. Rev. B 43, 10340 (1991).
- [19] U. Kabasawa, Y. Tarutani, M. Okamoto, T. Fukazawa, A. Tsukamoto, M. Hiratani, K. Takagi. Phys. Rev. Lett. 70, 1700 (1993).