MAGNETIC FIELD BEHAVIOUR OF SUPERCONDUCTING HETEROSTRUCTURES WITH ANTIFERROMAGNETIC LAYER.

I.V. Borisenko¹, K.Y. Constantinian¹, P.V. Komissinkiy¹,², Y.V. Kislinskii¹, G.A. Ovsyannikov¹, A.V. Shadrin¹

¹Institute of Radio Engineering and Electronics, Mokhovaia st. 11 buiding 7, 125009, Moscow, Russia;

³Technical University of Darmstadt, D-64287, Germany
e-mail: yuli@hitech.cplire.ru

A critical currents I_C versus magnetic field H for Nb/Au/Ca$_{0.5}$Sr$_{0.5}$CuO$_2$/YBa$_2$Cu$_3$O$_7$ heterostructures (GSA) with antiferromagnetic thin film layer (A) of Ca$_{0.5}$Sr$_{0.5}$CuO$_2$ 20 ÷ 50 nm in thickness were measured. It were compared with $I_C(H)$ dependencies for Nb/Au/YBa$_2$Cu$_3$O$_7$ Josephson junctions, which were made by similar technique and with the same sizes from 10-10 μm2 to 50-50 μm2. According to [1] GSA structures should have magnetic oscillations of I_C, which are much smaller in period, than period of $I_C(H)$ for SNS junctions, in case of A layer is thicker than coherence length. In figure 1 half widths of the main peak ΔH in dependency $I_C(H)$ are compared for GSA and for the junctions.

The ΔH fields for GSA with 50 nm Ca$_{0.5}$Sr$_{0.5}$CuO$_2$ layer (closed circles) were 25 times smaller, than the fields for junctions, which have no A layer (open circles). ΔH fields were inversely proportional to structure width L in both cases (solid lines). Sensitivity to magnetic field 2mV/G was obtained for 20-20 μm2 heterostructure.

It is a poster presentation to section “Magnetism and superconductivity.”