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Investigation of the Harmonic Mixer and
Low-Frequency Converter Regimes in a

Superconducting Tunnel Junction
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Abstract—We experimentally investigate different mixing regi-
mes in Nb/AlOx /Nb and Nb/AlN/NbN tunnel superconductor–
insulator–superconductor (SIS) junctions. The SIS mixers were
studied with regard to the following modes of operation: in an ex-
tremely low-frequency range (0.1–20 GHz) and as high harmonic
mixers; n � 20–30 at signal frequencies of about 500 GHz that
requires high power of a local oscillator. The quasiparticle and
Josephson mixing regimes have been compared. We demonstrate
that, in some applications requiring high conversion efficiency, the
Josephson regime can be more preferable than the quasiparticle
regime due to a larger output signal and better signal-to-noise ratio.
As an example of such an application, we consider the phase lock-
ing of a THz oscillator using a cryogenic harmonic phase detector,
which only ought to realize all of its benefits under the Josephson
mixing regime. In addition, we demonstrate that the presence of
the Josephson effect results in considerable increase in conversion
efficiency at the expense of the dynamic range decrease; it was
measured for low-frequency up- and down-convertors, which are
promising for cryogenic multiplexing systems.

Index Terms—SIS mixers, frequency conversion, Josephson
mixers, terahertz radiation.

I. INTRODUCTION

SUPERCONDUCTING nanostructures, based on tunnel
junctions, are widely used for submm signal mixing due

to extremely strong nonlinearity and low noise temperature [1]–
[3]. Mixing properties of SIS junctions are determined by two
types of nonlinearity related to quasiparticle and Cooper pair
tunneling currents, respectively. The nature of the quasipar-
ticle mixing is associated with a quasiparticle tunnel current
through the junction, which rapidly increases at the “gap” volt-
age Vg = (Δ1 + Δ2)/e, where Δ1,2 represent the energy gap
values for both superconductors comprising the SIS tunnel junc-
tion, while e is the electron charge. Josephson mixing is related
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to the BCS pair supercurrent, which is described by the DC
Josephson effect relation Is = Ic · sin(ϕ), where ϕ is the “phase
difference” across the junction and Ic is the critical current of
the junction. We will refer to the mixing regime involving both
types of nonlinearity as the “Josephson regime”, in contrast with
the “quasiparticle regime”, which is realized for the suppressed
critical current.

There are a number of theoretical [4], [5] and experimental
[6], [7] papers, which investigate the noise properties of the SIS
mixers in the Josephson regime. In these papers, it is shown
that the non-suppressed critical current causes an increase in
the noise level. Instability in the working point, as well as the
noise of the Josephson component itself, are usually considered
to be the reason for such an increase. In heterodyne THz SIS
receivers, the Josephson effect is traditionally considered to be
parasitic, which is the reason why the critical current of the SIS
mixer in such receivers is usually suppressed by an external
magnetic field [8], [9]. In the present article, we demonstrate
some practical applications where Josephson mixing can be
more preferable than the quasiparticle alternative.

II. SIS-BASED HARMONIC MIXER AND CRYOGENIC

HARMONIC PHASE DETECTOR

HMs based on the Schottky diode [10], [11] and the semicon-
ductor superlattice [12] are widely employed to down-convert
the THz signal of a solid-state source or a THz quantum cas-
cade laser for their frequency and phase stabilization. At the
same time there are only a few publications on the implementa-
tion of superconducting elements for frequency multiplication
[13] and harmonic mixing for sub-THz-source phase-locking
[14]–[16]. According to the approach proposed in [15], [16],
the HM is used for study and for further phase-locking of
a superconducting flux-flow oscillator (FFO) [17]–[19]. The
FFO signal is applied to the HM (a small SIS junction oper-
ating in Josephson or quasiparticle mode), along with the sig-
nal from the frequency synthesizer fSYN (of about 20 GHz).
The intermediate frequency (IF) signal, with frequency fIF =
± (fF F O − n · fSY N ), is boosted by cold and room tempera-
ture amplifiers for linewidth measurements and further use in
the PLL system.

One of the novel tunnel SIS junction applications is a wide-
band cryogenic harmonic phase detector (CHPD) for frequency
stabilization of the cryogenic THz oscillators [20], [21]. It has
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been shown that functional integration of the harmonic mixer
and phase detector in a single element decreases the time delay
in the feedback loop, thereby significantly expanding the syn-
chronization bandwidth of the PLL system based on the CHPD.

By introducing CHPD concept, we are able to reduce a num-
ber of the elements in a phase lock loop to the minimum (CHPD
and passive filters with very short connection lines); this sys-
tem can be placed on the same microcircuit with a cryogenic
oscillator. We estimate the efficiency of phase-locking by the
parameter called “spectral ratio” (SR), which is the ratio of the
phase-locked power in the peak to the total power emitted by
the oscillator in the range of about 100 MHz around the car-
rier. The implemented CHPD system has a bandwidth of about
70 MHz that allows to realize SR = 95% for the free-running
FFO linewidth of 3 MHz, while a conventional semiconductor
room-temperature PLL provides only 75%. For the free-running
FFO linewidth of 22 MHz the CHPD results in the SR = 77% ,
compared to the SR <5% for the RT PLL [20]–[22].

According to the CHPD concept, an SIS junction is imple-
mented for down-conversion of the FFO frequency and for
phase-locking of the FFO to an external reference by apply-
ing the HPD output directly to the FFO control line. However,
in the case of the CHPD-based PLL, an additional amplifier
could not be used without considerable synchronization band-
width reduction, which explains the need for the high-output
signal level of the CHPD itself. To maximize the output CHPD
signal, we study the mixing regimes of the harmonic mixer and
dependencies of the HM output signal on its bias voltage and
on the local oscillator (LO) power level.

The integrated circuit for HM study comprises an
Nb/AlOx/Nb tunnel SIS junction [23] [see Fig. 1(a)]; the
current-voltage characteristic and the Fraunhofer-like depen-
dence of the critical current on the magnetic line current for this
sample are shown in Fig. 1(b). The SIS junction is integrated on
a chip with a planar dipole antenna designed for the frequency
range of 450 to 700 GHz. In addition, the HM is connected via
a coplanar line to the directional coupler and bias tee, which are
mounted on a liquid helium cryostat at a temperature of 4.2 K.
We apply two signals to the SIS junction: 487 GHz radiation,
which is received by the antenna from the multiplier pumped by
a backward-wave oscillator (BWO), and the LO signal of about
20.1 GHz, which is applied through the directional coupler.
Frequency values are chosen to have an intermediate frequency
(IF) signal fIF = fBW O –24 · fLO in the band of the amplifier
(4–8 GHz). The critical current can be suppressed by the mag-
netic field, which is created by the current in the control line
integrated with the SIS mixer [24]. Details of the mixer design
are presented in [16]. After a tunable YIG filter (bandwidth of
70 MHz) is applied, the IF signal is detected either by a spectrum
analyzer or by a power meter.

We measured the dependencies of the IF power, both on the
HM’s bias voltage and on the LO power for two mixing modes:
“Josephson” regime (mixing at both quasiparticle and Josephson
nonlinearity, no magnetic field applied) and pure quasiparticle
regime (the critical current is suppressed by the magnetic field
at the first null of the suppression). For a proper comparison
of the discussed regimes, the noise level was also measured by

Fig. 1. The photo of the HM microcircuit (a) and the I–V curve of the SIS
junction used as a harmonic mixer (b). The parameters of the SIS junction are
as follows: critical current Ic = 17 μA, RnS = 32 Ohm·μm2 , gap voltage =
2.8 mV and normal state resistance = 46 Ohm. The dependence of the critical
current on the magnetic control line current is shown in the inset.

the same power meter, in which the BWO signal was shifted in
frequency by about 50 MHz and the IF signal was detuned from
the YIG filter band. The SNR of the down-converted signal was
estimated by subtracting this level from the IF power for every
bias voltage and LO power. As can be seen from Fig. 2, the
maximum SNR is reached for zero bias voltage and relatively
low LO power of about −11 dBm in the Josephson mixing
regime.

The benefit of the Josephson regime usage was proven by
the experiments on the SIS mixer as the CHPD for the FFO
phase-locking system, with the Josephson mixing providing up
to 83% synchronization of the signal with 18 MHz linewidth,
while critical current suppression lowers this value to 70%. It
should be noticed that reported before value of the SR as high as
SR = 77% for free-running FFO linewidth of 22 MHz has been
obtained for the CHPD operating in the Josephson regime. Thus,
the Josephson regime is preferable for the effective implemen-
tation of the SIS junction as the CHPD, where a strong output
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Fig. 2. The dependency of the SNR on SIS bias voltage and LO signal power
for Josephson (a) and quasiparticle (b) regimes. The insets show the profiles of
these dependencies for fixed values of LO power (top) and bias voltage (right).

signal with a satisfactory noise level is required. It should be
emphasized that the successful implementation of the supercon-
ducting integrated receiver [16], [24], onboard the high-altitude
balloon for Earth atmosphere monitoring [25], becomes possi-
ble due to the FFO phase-locking by the HM, as operated under
the Josephson regime.

III. SIS-BASED LOW-FREQUENCY CONVERTER

Another perspective application of a tunnel SIS mixer is as a
multiplexed readout system for a large number of transition-
edge sensor (TES) arrays [26], [27]. The proposed readout
makes use of frequency up-down conversion for extra level sig-
nal multiplexing and radio frequency (RF)-to-DC conversion
for SQUID amplifier biasing with SIS junctions operating at
GHz frequencies, in combination with existing frequency mul-
tiplexed readout at MHz frequencies. SIS devices recommended
themselves as low-noise mixers, capable of working at liquid
helium temperatures and having low power dissipation; that is

Fig. 3. The I–V curves of the SIS junction used as a low-frequency converter.
The parameters are as follows: area = 1 μm2 , gap voltage V g = 3.7 mV, nor-
mal state resistance = 24 Ohm, quality factor Rj/Rn = 34.

essential for the proposed multiplexed readout system. Note that
high conversion efficiency is extremely important for practical
implementation of the SIS junctions in the readout circuits. Such
readout schemes can drastically reduce the wiring from room
temperature to the cryogenic detectors, with a possibility to
read out and control as many as 30,000 pixels over three coaxial
lines within a bandwidth of 1 GHz. In a TES readout system,
the SIS junction is used as a low-frequency (0.1–10 GHz) up-
down converter. It means that the photon-associated quasiparti-
cle steps (hν/2e), which are expected to appear in the I-V curve
due to LO pumping, are actually too narrow and comparable to
the smearing of the sharp current increase in the gap voltage.
Therefore, the photon steps are virtually not present, and the
mixing regime is more similar to classical mixing than quantum
mixing [2].

We applied a 233 MHz RF signal and an LO signal of 5 GHz
directly to the SIS mixer, then detected an IF signal of 5.233 GHz
on the output. The dissipation losses in the chain were taken
into account during the data processing, such that all the re-
sults below present the properties and parameters of the SIS
junction itself. The I–V curve and parameters of the employed
Nb/AlN/NbN junction [28] are shown in Fig. 3; wiring of the
circuits was made by Nb layer.

The spectra of the converted signal for both mixing regimes,
at the same working point, are shown in Fig. 4. This result
proves that the higher output signal in the Josephson regime is
indeed the narrowband signal (the shape corresponds to the input
signal and to the shape measured in the quasiparticle regime with
accuracy about 1 kHz). It can be seen that the Josephson regime
has a noise level that is about 5 dB larger, which, at the same
time, provides IF signal power that is about 10 dB larger, thus
the SNR is about 5 dB better.

The considerable increase in the conversion gain is associated
with the steep but stable bumps in the pumped I–V curve with
high differential resistance, as can be easily observed in Fig. 3
at voltages of about 1−1.3 mV and 2.5−3 mV (see also [29]).
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Fig. 4. Spectra of IF signal for the Josephson and quasiparticle regimes, with
a resolution bandwidth of 910 Hz.

Fig. 5. The dependencies of IF signal power on the input signal for the
Josephson and quasiparticle regimes at the same working point: LO power =
−40 dBm, bias voltage = 2.7 mV, integration bandwidth = 1 kHz.

These bumps have been observed on both the Nb/AlOx/Nb and
the Nb/AlN/NbN junctions, whereby their localization depends
on the applied LO power, they disappear when the critical cur-
rent is suppressed. Fig. 5 demonstrates the dynamic ranges of the
Josephson and quasiparticle regimes. High-input signal power
suppresses the Josephson effect, which means that Josephson
mixing does not work at high-power signals (in our case) greater
than −60 dBm. This effect and additional Josephson noise re-
duces the dynamic range of the Josephson regime by 10 dB,
compared to the quasiparticle regime. However, the Josephson
regime has a conversion gain that is 10 dB better, which means
that the Josephson regime is preferable when conversion effi-
ciency is the main issue.

As Figs. 4 and 5 demonstrate, the Josephson mixing regime
has smaller conversion loss and larger SNR than the quasi-
particle regime. It makes the Josephson regime preferable for
applications where higher conversion efficiency is required. On

the other hand, in the quasiparticle regime it is easier to adjust
working point due to the smooth dependency of the conversion
gain on bias voltage and LO power. Moreover, the dynamic
range of the Josephson regime is smaller than the quasipar-
ticle one by 10 dB. Trade-offs between the mentioned above
issues (as well as between additional Josephson noise) and the
necessity of extra circuits for critical current suppression need
consideration when choosing the appropriate regime for each
specific application.

IV. DISCUSSION

We suppose that the shape of the IV curve (which determines
parameters of Josephson mixing regime) could be explained
using the model of resistive-shunted Josephson junction (RSJ),
driven by DC and AC current sources. The low-frequency pump-
ing of high-damped junction [30] could be approximately de-
scribed as a continuous changing of SIS operating point. Thus,
the step on the IV curve corresponds to the transition between
two modes: i) high dc biasing and weak microwave signal -
in this case the total current across the junction permanently
exceeds the value of critical current, so the junction is in the
resistive state during the whole oscillation period; ii) the am-
plitude of the applied AC signal becomes comparable with DC
bias - the instantaneous current across the junction is equal to
zero for the part of oscillation period, that abruptly decreases the
average (dc) voltage. In this case the operation point is periodi-
cally moving between superconductive and resistive states with
different conversion efficiency, which corresponds to the ampli-
tude modulation of the output signal. Such modulation leads to
the significant increasing of the output power at moderate rise
of the noise power and the modest broadening of the converted
spectra. As we experimentally showed above, this broadening
does not exceed 1 kHz, the gain performance of Josephson mix-
ing regime could be up to 10 dB and SNR up to 5 dB more in
comparison with the quasiparticle mixing. This makes Joseph-
son mixing prospective for some applications, demanding high
output levels, but allowing some spectra disturbing.

V. CONCLUSION

In this work, we experimentally demonstrated the advantages
of the Josephson mixing regime for some SIS mixer applica-
tions. Providing optimal power with regard to the LO signal
and optimum bias voltage, the Josephson regime offers not only
lower conversion loss, but also a higher SNR in comparison to
the quasiparticle regime. Since some practical applications de-
mand mixers and frequency convertors with high-output power
and a relatively low-noise level, the Josephson mixing regime
has been examined. We have experimentally demonstrated that
the best SNR of a high harmonic mixer (n � 20−30) could be
achieved at the Josephson mixing regime; that allows to real-
ize a more efficient synchronization of the THz oscillator by
the CHPD operated under this regime. The converters for com-
paratively low frequencies (0.1–10 GHz) also show the higher
conversion gain under the Josephson regime, albeit a narrower
dynamic range.
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