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Abstract
We report theoretical and experimental work on the development of a Josephson vortex two-state
system based on a confocal annular Josephson tunnel junction (CAJTJ). The key ingredient of
this geometrical configuration is a periodically variable width that generates a spatial vortex
potential with bistable states. This intrinsic vortex potential can be tuned by an externally applied
magnetic field and tilted by a bias current. The two-state system is accurately modeled by a one-
dimensional sine-Gordon like equation by means of which one can numerically calculate both
the magnetic field needed to set the vortex in a given state as well as the vortex-depinning
currents. Experimental data taken at 4.2 K on high-quality Nb/Al–AlOx/Nb CAJTJs with an
individual trapped fluxon advocate the presence of a robust and finely tunable double-well
potential for which reliable manipulation of the vortex state has been classically demonstrated.
The vortex is prepared in a given potential by means of an externally applied magnetic field,
while the state readout is accomplished by measuring the vortex-depinning current in a small
magnetic field. Our proof of principle experiment convincingly demonstrates that the proposed
vortex two-state system based on CAJTJs is robust and workable.

Keywords: Josephson devices, quantum computation, solitons, mesoscopic and nanoscale
systems
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1. Introduction

According to quantum mechanics, a massive particle sub-
jected to potential confinement has its energy quantized and a
discrete energy spectrum would be expected in the classical
region of positive kinetic energy. The energy levels can be
probed by irradiating the system with microwaves that reso-
nantly excite the particle from the ground state to the first
excited states (microwave spectroscopy). Quantum tunneling
allows the possibility to escape from a potential well, passing
the classically forbidden region. Due to tunneling, the ground

state in a double-well potential is a doublet with energy
splitting which depends critically on the precise shape and
scale of the potential and, when a measurement is made, the
particle is found in one of the two possible states Lñ∣ or Rñ∣
with a probability that oscillates in time [1]. In an asymmetric
double-well potential the linear superposition of the two
nearly degenerate macroscopically distinct ground states has
become very important in quantum information theory. In
fact, the coherent oscillation between the basis states is the
key ingredient for the realization of an elementary bit of
quantum information (qubits, i.e., two-state quantum-
mechanical systems) capable of implementing quantum

Superconductor Science and Technology

Supercond. Sci. Technol. 31 (2018) 025003 (15pp) https://doi.org/10.1088/1361-6668/aa9e17

4 Author to whom any correspondence should be addressed.

0953-2048/18/025003+15$33.00 © 2017 IOP Publishing Ltd Printed in the UK1

https://orcid.org/0000-0002-8913-7112
https://orcid.org/0000-0002-8913-7112
mailto:r.monaco@isasi.cnr.it and roberto.monaco@cnr.it
mailto:myg@fysik.dtu.dk
mailto:valery@hitech.cplire.ru
https://doi.org/10.1088/1361-6668/aa9e17
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6668/aa9e17&domain=pdf&date_stamp=2017-12-20
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6668/aa9e17&domain=pdf&date_stamp=2017-12-20


computing. The quantum superposition of the two basis states
can be manipulated by resonant microwave pulses.

Several two-state superconducting devices based on dif-
ferent degrees of freedom have been experimentally demon-
strated as viable solid-state qubits in analogy with atomic and
molecular systems. Indeed, Rabi oscillations, namely the
oscillations in the population of the first excited level as a
function of the applied microwave power, which are a pre-
liminary requirement of quantum computing, have been
reported in so-called charge [2, 3], flux [4, 5], and phase [6]
qubits. The operation of these systems, once sufficiently
decoupled from their environment, is based on quantum
coherence of the charge state, the magnetic-flux state, or the
Josephson phase state, respectively, in circuits made of low-
capacitance Josephson tunnel Junctions (JTJs). In distinction
to atoms, superconducting qubits which are driven by static
electric and magnetic fields, as well as microwave photons,
are strongly coupled to the environment. They can be fabri-
cated by established lithographic methods, and the prep-
aration, manipulation and measurement techniques are
relatively simple. In addition, their performance has improved
by several orders of magnitude in the past decade. The con-
tinuing evolution of designs and operational principles
demonstrates the robustness and future potential of the field.

One more type of superconducting qubit was proposed
which exploits the coherent superposition of two spatially
separated states for a Josephson vortex (a supercurrent loop
carrying one magnetic flux quantum also called fluxon)
within a long and narrow (planar) JTJ, the Josephson trans-
mission line (JTL), in which the spatial degree of freedom
gives rise to the existence of topological singularities (flux-
ons). JTLs are well suited systems for the experimental study
of nonlinear waves existing in the sine-Gordon system. In the
Josephson vortex qubit (JVQ), the center of mass of the
fluxon becomes the macroscopic collective coordinate of a
quantum particle existing within a potential well which can
contain discrete energy levels. As for all the other solid-state
qubits, there exists a crossover temperature which separates
the thermally activated region and the quantum tunneling
region. At high temperature, in the classical regime, the
fluxon can escape from a potential well, lifted by thermal
energy over the barrier. At low enough temperature T (k TB

smaller than the energy splitting of the qubit) when most of
the dissipative mechanisms are eliminated [7], the quantum
regime establishes and the fluxon escapes occurs by macro-
scopic quantum tunneling through the barrier [8]. This pro-
cess can be resonantly activated by a weak microwave
perturbation. Macroscopic quantum tunneling is important to
test the validity of the quantum mechanics on scales larger
than the atomic one [9].

So far the fluxon quantum effects have been observed
only in curved JTLs whose extremities are jointed to form a
doubly connected or annular JTL where the boundary con-
ditions of the open simply connected configuration are
replaced by periodic conditions. A unique property of not
simply connected junctions is the fluxoid quantization [10] in
the superconducting loop formed by either the top or the
bottom electrode of the tunnel junction. Then, one or more

fluxons may be topologically trapped in the junction during
the normal-superconducting transition. The existence of
quantized levels of the vortex energy within the trapping
potential well was demonstrated by measuring the statistics of
the vortex escape from a magnetically induced pinning
potential in a 0.5 μm wide ring-shaped JTL at temperatures
below 100 mK [11]; later on, the vortex quantum tunneling
was reported in a spatially dependent potential tailored by
locally changing the radius of curvature of the annular junc-
tion [12] to form a heart-shaped JTL [13]. However, the
coherent oscillation between the basis states, the key ingre-
dient for the realization of a qubit, has not yet been observed
for JVQs. In both cases the potentials were induced by an
externally applied uniform magnetic field. The two macro-
scopically distinct quantum states needed for the JVQ may
also be created by local magnetic fields induced by control
currents [14, 15] or even by residual spurious fields [16].
Other vortex qubit prototypes were suggested in which the
double-well potential is produced by two closely implanted
defect sites in the insulator layer [17, 18] or by two artificially
created discontinuities of the Josephson phase [19]. Further-
more, a two-state system has experimentally demonstrated
[20] in which the double-well potential for the vortex is
created by the competition between the repulsion at the
microshort and the pinning by an in-plane magnetic field.

In studying the Josephson vortex ratchet potentials,
Goldobin et al [12] found that for a variable-width JTL, as far
as the width does not change much over the distance com-
pared to the fluxon size, the fluxon potential just repeats the
width profile. It follows that a large variety of spatially
dependent fluxon potentials can be engineered in JTLs having
a non-uniform width, provided that the width-dependence of
the fluxon rest mass [17, 21] is taken into account in the
kinetic energy. Indeed, the existence of a fluxon repelling
(attracting) barrier induced by a slowly widening (narrowing)
JTL [22] has been recently investigated [23] to form a mag-
netically tunable double-well potential in variable-width
annular JTLs named confocal annular Josephson tunnel
junctions (CAJTJs)[24] since their tunneling area is delim-
ited by two closely spaced ellipses having the same focal
length; the tunneling area of a CAJTJ is shown in figure 1
where the principal diameters of the ellipses, a2 i and b2 i for
the inner one and a2 o and b2 o for the outer one, are made
parallel to the X and Y axes of a Cartesian coordinate system
and the common foci c, 0( ) lie on the X-axis. The width of
the confocal annulus is smallest at the equatorial point,

w a ao iminD = - , and largest at the poles, w b b ;o imaxD = -
the width variation is smoothly distributed along one fourth of
the JTL perimeter. It is this smooth periodic change of the
annulus width that makes the physics of CAJTJs very rich and
interesting and the modeling very accurate. As the ellipses
foci move towards the origin, the annulus eccentricity van-
ishes and the confocal annulus progressively reduces to a
circular annulus with uniform width. Such ring-shaped JTLs
were recognized to be ideal devices not only to experimen-
tally test the perturbation models developed to take into
account the dissipative effects in the propagation with no
collisions of sine-Gordon kinks [25–27], but also to
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investigate both the static and the dynamic properties of
fluxons in the spatially periodic potential induced by an in-
plane magnetic field, [13, 28–30]. The potential felt by a
fluxon trapped in a CAJTJ follows the variation of the width
with minima (maxima) at the equatorial (polar) points. In
addition, a large variety of fluxon potentials can be con-
structed by tuning the externally applied magnetic field and
bias current. The aim of this work is to provide the exper-
imental evidence of this potential in the thermal (or classic)
regime, with emphasis on the preparation and readout of the
vortex state. We show that the manipulation of the vortex
state can be accomplished by means of either a barrier-parallel
or transverse magnetic field.

The paper is organized as follows. In section 2, we state
the problem by describing the geometrical properties of a
CAJTJ and introduce the mathematical notations and iden-
tities used throughout this paper. In addition, we review the
modeling framework of our study, which is based on a
modified and perturbed sine-Gordon equation, and provide
the expression of the kinetic and potential energies for a
fluxon trapped in a current-biased CAJTJ subjected to an
external magnetic field. In section 3 we present numerical
simulations concerning the fluxon static and dynamic prop-
erties in underdamped CAJTJs and describe a protocol to
reliably prepare and determine the vortex state. In section 4
we describe the experimental setup, the fabrication of our
high-quality low-loss Nb/Al–AlOx/Nb window JTJs and the
geometries that have been realized; later on, we present the
experimental data of CAJTJs with both in-plane and trans-
verse magnetic fields and discuss the role of the magnetic
self-effect as well as of a non-uniform current distribution.
Finally, a characterization of the two-state potential in the
thermal (or classic) regime is presented in section 5 with
emphasis on the preparation and readout of the vortex state.
The conclusions are drawn in section 6.

2. Theory of one-dimensional CAJTJs

The geometry of our system suggests the use of the (planar)
elliptic coordinate system ,n t( ), a two-dimensional ortho-
gonal coordinate system in which the coordinate lines are
confocal ellipses and hyperbolae. In this system, for a given
positive c value, any point x y,( ) in the X–Y plane is uniquely
expressed as c ccosh sin , sinh cosn t n t( ) with 0n and

,t p pÎ -[ ]. According to these notations, the origin of τ lies
on the positive Y-axis and increases for a clockwise rotation.
In the limit c 0 , the elliptic coordinates ,n t( ) reduce to
polar coordinates r, q( ), where θ is the angle relative to the Y-
axis; the correspondence is given by t q and c rcosh n 
(note that ν itself becomes infinite as c 0 ). Once the foci
position is given, all the possible confocal ellipses are
uniquely identified by a value of ν; we will name in and

o in n> the characteristic values of, respectively, the inner and
outer CAJTJ boundaries. Their mean value, 2o in n n= +¯ ( ) ,
labels one more confocal ellipse in between, called mean or
master ellipse with principal axes a c cosh n=¯ ¯ and
b c sinh n=¯ ¯ such that a a ai o< <¯ and b b bi o< <¯ . A
confocal annulus is said to be narrow when

a a b 1o i o in n nD º - = - < <( ) ¯ . In this case we can
define the annulus (mean) aspect ratio,

b a tanh 1r nº =¯ ¯ ¯ , as the ratio of the length of the major
axis to the length of the minor axis and the annulus (mean)
eccentricity as e 1 sech 12 2 2 r nº - = ¯ . For a narrow
confocal annulus, the expression of the local width is [23]:

w c , 1t t nD = D( ) ( ) ( )

where  t( ) is the elliptic scale factor defined by
sinh2 2 t nº( ) ¯ sin cosh cos sinh2 2 2 2t n t n+ =¯ ¯

cos cosh sin cosh 2 cos 2 22 2 2t n t n t+ = - = +¯ ( ¯ ) that
oscillates between sinh n̄ and cosh n̄ with a period π. In the
small width approximation, w Jmax lD  , where Jl , called
Josephson penetration length, gives a measure of the distance
over which significant spatial variations of the Josephson
phase occur, the Josephson phase of a CAJTJ does not
depends on ν and the system becomes one-dimensional. The
length of an elementary arc of the master ellipse is
s cd d t t= ( ) . Therefore, we introduce the nonlinear curvi-
linear coordinate s c c ed cosh ,

0
2Eòt t t n t= ¢ ¢ =

t
( ) ( ) ¯ ( ),

where e, 2E t( ) is the incomplete elliptic integral of the second
kind of modulus e 12  . Accordingly, as τ changes by 2p
then s t( ) increases by L s c ed 4 cosh 2En= =∮ ¯ ( ) that is
exactly the perimeter of the master ellipse. Here

e e2,2 2E E pº( ) ( ) is the complete elliptic integrals of the
second kind of argument e2. The mean perimeter of a narrow
confocal annulus can also be expressed as L w2p n= D D ,
where

w w c e1 2 d 2 cosh 2Eòp t t p n nD º D = D
p

p

-
( ) ( ) ( ) ¯ ( ) is

the average annulus width. Then, the curvilinear coordinate
s t( ) can be cast in a more compact form as
s L e e, 4 ;2 2E Et t=( ) ( ) ( ) being , 0E t t=( ) and

0 2E p=( ) , for a thin circular ring with mean radius
r L 2p=¯ , it would be s s rt q q= =( ) ( ) ¯ . Furthermore, the
area of a narrow confocal annulus
is A c c wcosh 2 cosh 2 sinh2

minp n n p n n= D = D¯ ¯ ¯ .

Figure 1. Drawing of a confocal annulus delimited by two closely
spaced confocal ellipses, representing the tunneling area of a CAJTJ.
The two open circles are the common ellipses foci. The annulus
width is smallest at the equatorial points and largest at the poles.
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It has been recently derived that the ν-independent
Josephson phase, t,f t( ˆ), of a one-dimensional CAJTJ with a
uniform critical current density, Jc, in the presence of a spa-
tially homogeneous barrier-parallel magnetic field, H, of
arbitrary orientation, q̄, relative to the Y-axis, obeys a mod-
ified and perturbed sine-Gordon equation with a space
dependent effective Josephson penetration length inversely
proportional to the local junction width [24]:

c t

F

1 sin

, 2

J
t t

t h

2


l
t

b f f f

af g t t

+
¶
¶

- -

= - +

tt⎜ ⎟
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠( ) ˆ

( ) ( ) ( )

ˆˆ

ˆ

where t̂ is the time normalized to the inverse of the so-called
(maximum) plasma frequency, pw . The subscripts on f are a
shorthand for derivative with respect to the corresponding
variable. Furthermore, J JZ cg t t=( ) ( ) is the local normal-
ized density of the bias current and

F h
cos cosh sin sin sinh cos

3h 2
t

q n t q n t
t

º D
-( )

¯ ¯ ¯ ¯
( )

( )

is an additional forcing term proportional to the applied
magnetic field; h H J ccº is the normalized field strength for
treating long CAJTJs and Δ is a geometrical factor which has
been referred to as the coupling between the external field and
the flux density of the junction [28]. As usual, the α and β

terms in equation (2) account for, respectively, the quasi-
particle shunt loss and the surface losses in the super-
conducting electrodes. Equation (2) can be classified as a
perturbed and modified sine-Gordon equation in which the
perturbations are given by the system dissipation and driving
fields, while the modification is represented by an effective
local π-periodic Josephson penetration length,

Q c WJ J Jt l t l n tL º = D D( ) ( ) ( ), inversely proportional
to the annulus width. It is worth to point out that this JL
variation stems from the variable junction width and cannot
be modeled in terms of a spatially varying Jl in a uniform-
width JTL as treated in [31, 32]; however, in the time-inde-
pendent case, it happens to be equivalent to a change in the Jc
of a uniform-width JTL [33]. As the annulus aspect ratio
approaches unity, the factor c tends to the ring radius and
equation (2) reduces to the well known perturbed sine-Gordon
equation of a circular annular JTLs [28]. We stress that, for
CAJTJs in a uniform in-plane magnetic field, the component
of the applied magnetic field normal to the junction perimeter
varies very smoothly, guaranteeing an accurate modeling at
variance with other proposed geometries for a JVQ based on
the δ-like behavior of the normal field or of the local critical
current density [12, 34, 35].

As already said, when cooling an annular JTL below its
critical temperature one or more magnetic flux quanta may be
spontaneously trapped in its doubly connected electrodes;
their trapping probability is known to increase with the speed
of the normal-to-superconducting transition [36]. The alge-
braic sum of the flux quanta trapped in each electrode is an
integer number n, called the winding number, counting the
number of Josephson vortices (fluxons) trapped in the junc-
tion barrier; also the spontaneous fluxon trapping process

follows a statistical law [37]. In the absence of a symmetry-
breaking external magnetic field the likelihoods to trap a
fluxon or an antifluxon are equal [38]. Once trapped the
fluxons can never disappear and only fluxon–antifluxon pairs
can be nucleated. To take into account the number of trapped
fluxon, equation (2) is supplemented by periodic boundary
conditions [39]:

t t n a2 , , 2 , 4f t p f t p+ = +( ˆ) ( ˆ) ( )

t t b2 , , . 4f t p f t+ =t t( ˆ) ( ˆ) ( )

In the absence of dissipative and driving forces, the simplest
topologically stable dynamic solution to equation (2) on an
infinite line, in a first approximation, is a 2p-kink (fluxon)
centered at a time-dependent coordinate s t0 (ˆ), namely,

t s s t, 4 arctan exp J0f t t l= Ã -˜ ( ˆ) { [ ( ) (ˆ)] }, where 1Ã = 
is the topological charge, i.e., the fluxon polarity [40]. Indeed,
the phase profile:

t
L e

e

s t
, 4 arctan exp

,
,

J J

2

2
0E

E
f t

t
l l

= Ã -
⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
˜ ( ˆ) ( )

( )
(ˆ)

satisfies equation (2) with damping and driving terms drop-
ped, provided that [23] the annular junction is long enough on
the kink scale, c 1 sinhJ

3l n ¯ , and both the normalized
(tangential) fluxon speed, u s td dJ0 lºˆ ( ) ˆ, and acceleration,
a u td dºˆ ˆ ˆ, are (in moduli) much less than unity (non-rela-
tivistic limit).

The Lagrangian and Hamiltonian densities associated
with equation (2) have been derived in [23]. By assuming that
the annulus is long enough so that the left and right tails of the
fluxon do not interact, it was found that in the absence of
external forces the energy of a non-relativistic fluxon,
E K Uw= +ˆ ˆ ˆ , is conserved. The circumflex accents denotes
normalized quantities. Ê is normalized to the characteristic
energy, J c 2c J0 l n p= F D . Both the kinetic energy,
K u40 0

2t t»ˆ ( ) ( ) ˆ , and the intrinsic potential energy,
U 8w 0 0t t»ˆ ( ) ( ), are position dependent through the scale
factor—see equation (1). This is consistent with the rela-
tivistic expression E m u10

2
0t t= -ˆ ˆ ( ) ˆ ( ) reported by

Nappi and Pagano [41], provided that we introduce the
position-dependent rest mass m 80 0t t=ˆ ( ) ( ). Note that the
energy of a CAJTJ containing one static vortex is
m 2 8p =( ) , with c 2 p n D( ) being the smallest
annulus width.

The potential Uw
ˆ , shown by the dashed curve in figure 2,

expresses a π-periodic potential energy function uniquely
determined by the CAJTJ ellipticity, e sech2 2 nº ¯ . The
potential wells are located at 20t p=  , where the annulus
width is smallest. The left Lñ∣ and right Rñ∣ wells of the
potential constitute stable classical states for the vortex with
degenerate ground state energy. Considering that
sinh cosh n t n¯ ( ) ¯ , the potential wells are separated by
an energy barrier proportional to the exponential of n̄ . For a
CAJTJ of moderate eccentricity (corresponding to 0.5r ),
 t( ) can be approximated by its truncated Fourier expansion,

e2 cosh cos 2 2 2 cosh 22E t p n t n» +( ) ( ) ¯ ( ) ¯ , and the
unperturbed potential, Uw

ˆ , turns into a sinusoidal potential
whose properties have been well investigated both in the
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thermal and quantum-mechanical regimes [11, 13]. We stress
thatUw

ˆ is an intrinsic potential, i.e., it occurs in the absence of
an applied magnetic field. However, it differs from the sinu-
soidal potential induced by a small uniform field applied to a
circular annular JTL [30] in several aspects: (i) Uw

ˆ has an
halved periodicity, i.e., there are two minima and two maxima
for every round trip; (ii) Uw

ˆ is proportional to 2ft and so is
independent on the fluxon polarity, Ã, while a magnetic
potential complies with the fluxon polarity; (iii) by squashing
the annulus the relative inter-well barrier height can be made
arbitrarily large, albeit limited by the resolution of the litho-
graphic processes in the reproducing the annulus narrowest
region.

In the general case with applied magnetic field and bias
current, the one-dimensional potential energy experienced by
the fluxon is made up by the sum of three contributions:

U U U U . 5w h0 0 0 0t t t t= + + gˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )

U c u2h J h0 0t p l t» Ãˆ ( ) ( ) ( ) is the 2p-periodic magnetic
potential, where:

u h sin sinh sin cos cosh cos . 6h t q n t q n tº D +( ) ( ¯ ¯ ¯ ¯ ) ( )

uh t( ) is π-antiperiodic in τ, i.e., u uh ht p t+ = -( ) ( ), then it
averages to zero over one period. Furthermore,
u Fd dh h

2t t t= ( ) ( ). For a Josephson ring, with τ replaced
by θ and n  ¥¯ , we recover the sinusoidal magnetic
potential [42], U cosh q q qµ -ˆ ( ) (¯ ). The dotted curve in
figure 2 shows how the fluxon potential changes when a
(negative) perpendicular field ( 0q =¯ ), is applied to the
CAJTJ; the potential U Uw h0 0t t+ˆ ( ) ˆ ( ) is still invariant under

parity transformation 0 0t t -( ) and develops into a field-
controlled symmetric potential with finite walls and two
spatially separated minima. Increasing further the magnetic
field, eventually the minima coalesce and the perturbed
potential becomes single-welled.

Furthermore, U c u2 J0 0t p l t» Ãg gˆ ( ) ( ) ( ) is the current-
induced potential; assuming a uniform current distribution

0g t g=( ) , it is:

u
2

cosh 2
1

2
sin 2 , 70t

g
t n tº +g ⎜ ⎟⎛

⎝
⎞
⎠( ) ¯ ( )

such that ud d 0
2t g t=g ( ). The solid line in figure 2 shows

the total potential when a bias current is feeding the CAJTJ.
The resulting potential is qualitatively similar to the well-
studied tilted washboard potential for the phase difference of
a small JTJ biased below its critical current [43]; the only
difference is that in our case the degree of freedom is the
space, rather than the Josephson phase difference. Indeed, the
potential profile can be tilted either to the left or to the right
depending on the polarity of the bias current, 0g . The incli-
nation is proportional to the Lorentz force acting on the vortex
which is induced by the bias current applied to the junction.
The smallest tilt that allows the vortex to escape from a well
defines the so-called depinning current, dg .

3. The numerical simulations

In this section we numerically investigate the static and
dynamic properties of a long and narrow CAJTJ in the pre-
sence of an external in-plane magnetic field applied along one
of its symmetry axes. The commercial finite element simu-
lation package COMSOL MULTIPHYSICS (www.comsol.
com) was used to numerically solve equation (2) subjected to
the cyclic boundary conditions in equations (4a) and (4b) for
several values of the winding number n. We set the damping
coefficients 0.05a = (weakly underdamped limit) and

0b = , while keeping the current distribution uniform, i.e.,

0g t g=( ) . In addition, the field coupling constant,Δ, was set
equal to 1. In order to compare the numerical results with the
experimental findings presented in the next section, we set the
annulus aspect ratio to 1 2r = —as in figure 1—corresp-
onding to e 0.752 = and 0.549n »¯ , such that the largest
CAJTJ width is twice its smallest one (in fact,

w w tanhmin max n rD D = =¯ ). Furthermore the normalized
length was set to ℓ L 10 ;Jl p= = then, the (smooth) var-
iation of the annulus width occurs over a length,
L 4 2.5 8J Jpl l= » , quite large compared to the
fluxon size.

3.1. The magnetic diffraction patterns (MDPs): n=0

To begin with, numerical integrations of equation (2) have
been carried out in the stationary, i.e., time-independent, state
( 0tf =ˆ ) to derive the MDP of the critical current of the
CAJTJs. Specifically, we have numerically computed the
maximum (or critical) value, I H I 0c c cg = ( ) ( ), of the nor-
malized zero-voltage current versus the normalized field

Figure 2. Schematic representation of the fluxon one-dimensional
potential in different conditions. The dashed line refers to the
intrinsic width-induced potential Uw

ˆ with two minima at 2t p= 
coincident with the degenerate states Rñ∣ and L ;ñ∣ the dotted line
corresponds to the symmetric double-well potential U Uw h+ˆ ˆ in the
presence of a uniform in-plane magnetic field perpendicular to the
long annulus diameter; the solid line shows the potential
U U Uw h+ + gˆ ˆ ˆ in the most generic case of applied magnetic field and
bias current. The three potentials are shifted by arbitrary vertical
offsets.
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amplitude, h H J cc= , in the case of no trapped fluxons
(n=0). We considered two orthogonal orientations of the in-
plane magnetic field relative to the annulus major diameter: a
field h⊥ perpendicular to the major axis corresponds to a field
orientation 0q =¯ in the magnetic forcing term Fh defined in
equation (3), vice versa for 2q p=¯ the field is parallel to the
major diameter and will be named hP. These coordinate-sys-
tem-independent notations will turn out to be useful in the
next section where we discuss the experimental results of
CAJTJs whose foci lie either on the X-axis—as in figure 1—
or, by means of a 90°rotation, on the Y-axis in the presence
of a magnetic field applied along the Y-direction.

The MDPs of electrically small (ℓ 1 ) and inter-
mediate-length (ℓ 4p= ) CAJTJs with 0.5r = have been
reported in, respectively, [23, 44]. At variance with any pre-
viously considered long JTJ, the zero-field critical current was
found to be multiple-valued due to the existence of static
fluxon(s) and antifluxon(s) constrained either in the same
width-induced potential well or in diametrically opposed
wells until the Lorentz force associated with the bias current
is strong enough to start their motion. In the pioneering paper
by Owen and Scalapino for linear constant-width long JTJs
[45], the multiple-valued cg , corresponding to different con-
figurations of the Josephson phase inside the barrier, were
only observed in the presence of a magnetic field; this same
behavior has been also confirmed in circular annular JTLs
[39]. In figures 3(a) and (b) we show the numerically com-
puted MDPs for a10p-long CAJTJ with 0.5r = . Since, as far
as n=0, it is h hc cg g- =( ) ( ), here we only show the
dependence for positive field values.

In order to trace the different lobes of the MDP, it is
crucial to start the numerical integration with a proper initial
phase profile, , 0f t( ), compatible with the chosen winding
number. In the figures we plot the solutions corresponding to
the principal phase configurations. The main lobe of the
MDPs, denoted by open circles, was obtained by starting the
integration with a spatially uniform phase profile and shows a

linear decrease of the critical current with the external field;
indeed, this feature, common to all long JTJs, can be erro-
neously interpreted as the signature of the full expulsion of
the magnetic field from the junction interior (Meissner effect)
that is not achievable in curved junctions [46]. The field value
where the main lobe vanishes is called the (first) critical field,
h ;c1 we note that the critical field is smaller for 0q =¯ , that is,
as expected, the response to the external field is stronger when
the field is perpendicular to the longest annulus diameter.

The cg values obtained with an initial phase configuration
containing one fluxon–antifluxon (FF̄) pair are identified by
stars in the MDP plots. Initially, in the absence of a magnetic
field, F and F̄ each has to be in its own potential well,
otherwise they annihilate. As we increase the field, we
observe different behaviors depending on the field orienta-
tion. In the perpendicular field, h⊥, that does not break the
symmetry of the potential, no matters which particle is in
which well and the critical current decreases to zero; upon
increasing the field further, both particles fall in the same well
and are kept apart by the magnetic force which prevents their
annihilation. Conversely, in a small parallel field, hP, the
modulation depends on the initial positions of the particles: cg
increases when the fluxon is in the right well and the anti-
fluxon in the left well, while it decreases in the opposite case.
The full circles correspond to higher lobes resulting from an
initial phase profile containing more than one FF̄ pair. For

0q =¯ we could only find solutions corresponding to one and
two static pairs. On the contrary, by rotating the field by 90°,
solutions with up to ten pairs could be easily found; in
figure 3(b) we show the numerical data up to six FF̄ pairs.

3.2. Single fluxon statics: n ¼ +1

In principle, the static properties of a fluxon trapped in a one-
dimensional CAJTJ, could be disclosed by minimizing the
potential in equation (5), i.e., by finding the roots of Ud d 0tˆ
and then selecting the stable 0t -positions. However, this

Figure 3. Numerically computed magnetic diffraction patterns, hcg ( ), of a one-dimensional CAJTJ with 0.5r = , ℓ 10p= and different
values of the winding number n for two values of the in-plane field orientation, q̄,: (a) 0q =¯ , (b) 2q p=¯ . The magnetic fields are
normalized to J cc .
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process would provide approximate results when the external
potentials, Uh

ˆ and Ugˆ cannot be considered as small pertur-
bations and, even worse, when the CAJTJ is not very long.
Furthermore, the collective coordinate describing the motion
of topological solutions of the sine-Gordon equation was
introduced with the assumption that the fluxon is a rigid body,
whose shape does not change when it moves. This condition
is not fulfilled in varying-width JTls in which the fluxon has a
position-dependent inertial mass. For the reasons above, the
potential in equation (5) is useful just for a qualitative
understanding and it is mandatory to resort to numerical
analysis. The manipulation of the vortex states, that are
important with respect to the possible realization of a vortex
qubit, are numerically analyzed in this subsection.

A static fluxon centered either in left ( 20t p= - ) or
right well ( 2t p= ) was chosen for the system initial con-
dition in equation (2) with n 1= + . We first consider the case
of an in-plane field, h⊥, applied perpendicular to the longest
annulus diameter, i.e., along the Y-axis ( 0q =¯ ). The numer-
ical analysis showed that, for small h⊥, the fluxon static
positions in the equatorial points shift towards one of the
polar points (depending on the field sign) until they merge for
a (perpendicular) threshold field strength whose absolute
value, h 0.16* »^ , is well below the (first) perpendicular cri-
tical field. It follows that for h h*^ ^∣ ∣ the information about
the vortex initial state is lost. For h h*<^ ^∣ ∣ , as we apply a bias
current, the potential is tilted and at some point the fluxon is
depinned from its original well and gets trapped in the
opposite well which has an higher depinning current; this
occurs because the intra-well barrier is much larger than the
inter-well barrier [16]. The application and the later removal
of the proper perpendicular field and bias current represent a
viable procedure to prepare the vortex state; however, in the
presence of a perpendicular field the state readout cannot be
achieved by a current switch measurement.

We now revert to the more interesting case of an in-plane
field, hP, parallel to the longest annulus diameter ( 2q p=¯ ),
whose potential, Uh

ˆ , is in phase with one of the wells of the
intrinsic potential Uw

ˆ and out of phase with the other one.
Therefore, a sufficiently large parallel field, h* , will further
deepen one well, while completely suppressing the other one.
It means that any field value whose absolute value is larger
than the parallel threshold field, h h 0.62*> » ∣ ∣ , forces the
fluxon in a given state—either Lñ∣ or Rñ∣ depending on the
field polarity—without the need to apply a bias current. Once
the fluxon state has been prepared, the parallel field can be
reduced or even removed. In addition, for h h*< ∣ ∣ , the
depinning currents for the two states are quite different and
once depinned the fluxon has enough energy not to be re-
trapped in the next well; it is, then, possible to discriminate
between the two states by a current switch measurement. We
are, of course, assuming that the losses are not so large to
quickly dissipate the fluxon energy. Our numerical findings
on the fluxon static properties are summarized in the
figures 4(a) and (b) reporting the field dependence of the
positive depinning currents,

d
Lg + (open circles) and

d
Rg +

(crosses), for a fluxon, respectively, either in the Lñ∣ or Rñ∣

initial state. Figures 4(a) and (b) refer to a CAJTJ having
0.5r = in the presence of a, respectively, perpendicular and

parallel in-plane magnetic field. We first note that the zero-
field depinning currents are degenerate, 0 0d

L
d
Rg g=+ +( ) ( ),

and are an appreciable fraction of the zero-field critical cur-
rent. As the magnetic field is turned on, it is seen that, the
degeneration is removed.

In the perpendicular field range h h*<^ ^∣ ∣ ∣ ∣, the fluxon
escaping from the well with the smaller depinning current is
re-trapped in the other well which has a larger depinning
current. Figure 4(a) also shows that for h h*^ ^∣ ∣ ∣ ∣ the
depinning currents abruptly become identical,

h hd
L

d
Rg g=+ ^ + ^( ) ( ). This occurs because the two wells have

coalesced into a single well. For the negative depinning
currents,

d
L R,g - , it was found that h hd dg g= - -- ^ + ^( ) ( ). Fur-

thermore, a current inversion was found to correspond to an
exchange of the Lñ∣ and Rñ∣ states, i.e., h hd

R
d
Lg g= -- ^ + ^( ) ( ).

As shown in figure 4(b), in the presence of a parallel
field, hP, not only the depinning from the Lñ∣ and Rñ∣ states
occurs at different bias currents in a quite large field range,
h h*< ∣ ∣ , but, once escaped, the fluxon is not re-trapped in
the adjacent well. Therefore the measurement of the depin-
ning current allows to localize the vortex in one of the two
states. For the negative depinning currents,

d
L R,g - , it was found

that h hd dg g= -- + ( ) ( ). It follows that the determination of
the fluxon state can be as well accomplished through the
measurement of a negative current switch. It might happen
that for h h*> ∣ ∣ a small range of magnetic field exists for

which h hd
L

d
Rg g=+ + ( ) ( ).

Summarizing, the fluxon state preparation can be reliably
achieved by just applying a parallel field whose absolute
value is larger than the parallel threshold field, h* , while the
state readout can be accomplished by a measurement of the
depinning current in a smaller field, h h*< ∣ ∣ . Interestingly, if
an antifluxon, rather than a fluxon, is trapped in the CAJTJ,
the preparation and readout procedure both work in the
opposite way so that the final result is unchanged. It means
that at the end of each successful trapping procedures, it will
not be possible to determine the polarity of the spontaneously
trapped fluxon. Plots qualitatively similar to those in
figures 4(a), (b), albeit with smaller depinning currents, have
been obtained (but are not shown) for two trapped unipolar
fluxons (though multiple spontaneous trappings are less likely
to happen).

3.3. Single fluxon dynamics

If a depinned fluxon has enough energy to escape all potential
wells, it starts to travel around the annulus and a voltage jump
from the static state (V=0) to the running state (V 0¹ ) is
detected. Generally speaking, the fluxon motion in current-
biased JTLs is manifested by a stable finite-voltage current
branch in its current–voltage characteristic (IVC); in the
absence of an external magnetic field this current singularity
is called the (first) zero-field step (ZFS1). In normalized units,
the dc-current corresponds to the uniform forcing term γ in
equation (2), while the dc-voltage generated by the fluxon
traveling around the annulus with revolution period T is given
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by its spatio-temporal average speed u ℓ T;=¯ the asymptotic
voltage of the resonance, u 1=¯ , corresponds to an average
speed equal to the Swihart velocity [47], c̄, which is the
characteristic velocity of electromagnetic waves in JTLs. The
tangential fluxon speed û increases (decreases) when it
approaches a well (barrier) of the tilted periodic potential.
This makes the fluxon dynamics in a CAJTJ very different
from the constant speed motion in a uniform-width ring-
shaped JTJ. In fact, when a fluxon is accelerated other exci-
tations such as the so-called plasma waves are radiated.
Depending on the fluxon velocity, resonances may occur
between the fluxon and the plasma waves corresponding to
different wave numbers [48]. Although the dispersion relation
is not know in a CAJTJ, the strength of the resonance dras-
tically depends on the waves amplitudes which, in turn, are
strictly related on the systemʼs dissipation and circumference
as well as on the steepness of the potential energy difference.
These resonances appear as regular fine structures on the ZFS
profile of samples with very low damping [49].

Figure 5 shows the numerically computed ZFS profile
(i.e., γ versus ū) of a CAJTJ having an aspect ratio 0.5r =
and a normalized length ℓ 10p= . The dashed right pointing
arrow at 0.19g = indicates the depinning current already
discussed in the previous paragraph, while the dotted left
pointing arrow 0.08g = denotes the re-trapping current, i.e.,
the minimum current at which the fluxon still moves along the
system, not being trapped by the potential. The ug - ¯ plot is
quite smooth and only moderately departs from the pertur-
bative model expectation u u4 12g a p= --( ¯) ¯ (solid line)
valid for fluxon traveling in a flat potential and in the absence
of collisions [40, 44], that is, for 1r = . The main discrepancy
is observed for low bias currents, where the step profile is not
smooth but shows some, not well resolved, fine structures
[49] due to the resonance of the traveling fluxon with
wavelets radiated by the fluxon itself subject to periodic
accelerations and decelerations. The ZFS profile presents a
premature switching point, indicated by the solid arrow at

0.85g = , due to the fluxon instability at high speed that
prevents the fluxon from reaching relativistic speeds.

4. The measurements

4.1. The samples and the experimental setup

Using the well known and reliable selective niobium etching
and anodization process[50] we have realized high-quality
window-type Nb/Al–AlOx/Nb CAJTJs. The details of the
trilayer deposition and of the fabrication process can be found
elsewhere [51]. Four CAJTJs (named from JJA to JJD) are
integrated on a 3 4.2 mm2´ Si chip all having the so-called
Lyngby-type geometry[25] that refers to a specularly sym-
metric configuration in which the width of the current car-
rying electrodes matches one of the ellipse outer axis and the

Figure 4. Numerically computed field dependence of the positive fluxon depinning currents of the Lñ∣ (open circles for d
Lg +) and Rñ∣ (stars for

d
Rg +) states for two values of the in-plane field orientation, q̄,: (a) 0q =¯ , (b) 2q p=¯ . The magnetic fields are normalized to J cc .

Figure 5.Numerically computed profile of the first zero-field step for
a CAJTJ. Results are calculated integrating equation (2) with

0.5r = , l 10p= , 0.05a = , 0b = , h=0, and n=1. The solid

line is the perturbative model expectation u u4 12g a p= --( ¯) ¯
for a constant-width circular annular JTJ, i.e., for 1r = .
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tunneling area is obtained by the superposition of two
superconducting rings. The chip layout is schematized in
figure 6, where the top/wiring layer is shown in black and the
bottom layer in gray. The hatched meander-line strip on the
top is a Mo resistive film used for a fast and reliable heating
of the chip; this resistive element has a nominal dc resistance
of 100 W at LHe temperatures and, due to its good adhesion
with the substrate, is very effective in dissipating heat to the
chip. The junctions JJB and JJC, that we will call horizontal
junctions, have the longer principal axis along the X-direction,
but differ with respect to the direction of the bias current and
the associated induced magnetic field (the so-called self-
fields). On the contrary, the vertical junctions, JJA and JJD,
have the foci on the Y-axis and again differ in the bias current
direction. The reasons to have differently oriented CAJTJs are
twofold: (i) in our experimental setup the barrier-parallel
magnetic field can only be applied along the Y-axis; (ii)
generally speaking, the self-field in a long annular JTJ can be
compensated by means of a magnetic field perpendicular to
the direction of the bias current [39, 46].

All four CAJTJs on the chip had the same aspect ratio
0.5r = and annulus mean perimeter was L 200 mm= . The

geometrical details of the CAJTJ tunneling area are listed in
table 1. In designing the photo-lithographic mask which
defines the area of the junctions, a 0.45 μm under-etch
occurring at the mask fabrication and subsequent junction

definition process was taken into account; it means that on the
mask the nominal barrier area is not delimited by two closely
spaced confocal ellipses, but by one curve parallel to and
inside the inner ellipse and another one parallel to and outside
the outer ellipse.

Our setup consisted of a cryoprobe inserted vertically in a
commercial LHe dewar. The chip with the CAJTJs is
mounted on a Cu block enclosed in a vacuum-tight can
immersed in the liquid He bath. The cryoprobe was magne-
tically shielded by means of two concentric long cylindrical
Pb cans and a cryoperm one; in addition, the measurements
were carried out in an rf-shielded room. The external magn-
etic field could be applied both in the chip plane or in the
orthogonal direction. The chip was positioned in the center of
a long superconducting cylindrical solenoid whose axis was
along the Y-direction (see figure 6) to provide an in-plane
magnetic field, either H∣∣ or H⊥ depending on the junction
orientation. The transverse magnetic field, Hz, was applied by
means of a superconducting cylindrical coil with its axis
oriented along the Z-direction. The field-to-current conversion
factor was 3.9 μTmA−1 for the solenoid and 4.4 μTmA−1 for
the coil.

The critical current density of our samples was measured
on electrically small cross-type junctions realized in the same
wafer on different chips; at T 4.2 K= , we found
J 2.2 kA cmc

2» - corresponding to 5.9 mJl m» . Taking
into account a 1.5 mm wide idle region, it is 6.2 mJl m»
which provides a normalized length ℓ L 32 10Jl p= »  .
We point out that the smallest curvature radius,
b a c sinh 10.3 m2 r n m= »¯ ¯ ¯ is larger than Jl . A large
number of samples were investigated whose high quality has
been inferred by a measure of the their IVCs at T 4.2 K= . In
fact, the subgap current Isg at 2 mV was small compared to the
current rise IgD in the quasi-particle current at the gap voltage
V 2.95 mVg » , typically I I35g sgD > . In addition, all samples
showed not only the zero-field critical current, Ic,0, but also
the maximum critical current, Ic,max, considerably smaller
than about the 70% of the current jump at the gap voltage,

IgD , typical of short Nb/Al–AlOx–Al/Nb junctions. This is
the first signature of a non-uniform bias current distribution
and of the self-field effects [46, 52]. More information about
these two effects will be envisaged by analyzing the junc-
tions MDPs.

4.2. In-plane MDPs

On real devices, the measurements of maximum supercurrent
against the external field often yield the envelop of the lobes,
i.e., the current distribution switches automatically to the
mode which for a given field carries the largest supercurrent.
Sometimes, for a given applied field, multiple solutions are
observed on a statistical basis by sweeping many times on the
junction IVC.

Several chips were tested all made within the same fab-
rication run and they gave qualitatively similar results; the
finding presented here pertain to just a representative one.
Figures 7(a)–(d) display the MDPs of the four junctions JJA
to JJD on that chip ( I 28 mAgD » ) with an in-plane magnetic

Figure 6. Layout of a 3 4.2 mm2´ Si chip each integrating four
nominally identical CAJTJs; the top/wiring layer is in black, while
the bottom layer is in gray. JJB and JJC have the longer principal
axis along the X-axis, but differ with respect to the directions of the
bias current. JJA and JJD have the longer principal axis along the Y-
axis, but different bias current directions. The hatched meander-line
strip on the top is a Mo resistive film used for a fast and reliable
heating of the chip.
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field applied in the Y-direction; the (first) critical fields are
obtained extrapolating to zero the MDP first lobe (see dotted
lines). At a first glance, we observe that the MDPs of the
horizontal junctions, JJB and JJC, for which the field is
perpendicular to the longest annulus diameter are quite dif-
ferent from those of JJA and JJD whose longest diameter is
parallel to the applied field. The main difference is the lack of
multiple solutions for the horizontal junctions as compared to
the pronounced overlapping lobes in the vertical junctions.

This is the first experimental evidence of the width non-uni-
formity; in fact, for elliptic annular junctions of constant
width, I Hc ( )∣∣ and I Hc ^( ) simply scale with the inverse of the
diameter perpendicular to the applied field [46]. We also
observe that the MDPs of the topmost CAJTJs, JJA and JJB,
are slightly skewed: this is a well known effects occurring in
long annular junctions whose bias current is perpendicular to
direction of the applied magnetic field [39, 46]. The com-
parison of the experimental MDPs with those expected—see

Figure 7. Experimental magnetic diffraction patterns of the four nominally identical CAJTJs on a representative chip in the presence of an in-
plane magnetic field applied along the Y-direction: (a) junction A, (b) junction B, (c) junction C, (d) junction D. The extrapolated dotted lines
help to locate the critical fields.

Table 1. The geometrical details of the tunneling area of our CAJTJs. Refer to figure 1. w c sinhminn nD = D ¯ .

ρ n̄ ai bi ao bo wminD wmaxD c A L nD
μm μm μm μm μm μm μm μm2 μm

0.5 0.549 40.3 18.6 42.4 22.8 2.1 4.2 35.8 680 200 0.102
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figures 3(a) and (b)—highlights several common features
such as the parallel critical fields ( 1.2 kA m 1> - ) being larger
than the orthogonal ones ( 0.7 kA m 1< - ) and the large
amplitude of the secondary lobes in the presence of a parallel
field. The main discrepancy is the absence of zero-field
double solutions in the experimental MDPs; however, at least
for the horizontal CAJTJs, the linear extrapolations to zero
field of the first positive and negative lobes, as indicated by
the dotted line, converge to finite current values. In order to
make a quantitative comparison between the experimental
and the theoretical MDPs we have to consider that for our
samples the normalizing magnetic field is J c 800 A mc

1» - .

4.3. Transverse MDPs

An alternative way to modulate the critical current of a planar
JTJ is to apply a magnetic field, Hz, perpendicular to the
junction plane[53–56], which induces shielding currents in
its electrodes. In turn, the shielding currents generate a local
magnetic field whose normal component thread the Josephson
barrier. The modulation amplitude drastically depends on the
geometry of the electrodes and on how close to the barrier the
shielding currents circulate. It has been proven that this
mechanism is particularly efficient in annular junction
[36, 46]. Figures 8(a)–(d) display the Ic versus Hz depen-
dencies of the same junctions reported in figures 7(a)–(d).
They can be interpreted according to the simple rule that for
Lyngby-type annuli a transverse field is equivalent to an-in
plane field applied in the direction of the current flow [46]. In
fact, while the transverse MDPs of junctions C and D are
practically indistinguishable from their in-plane counterpart
(apart from a field factor scale), those for junctions A and B
are inverted. It is also seen that for our samples the transverse
magnetic field is at least one order of magnitude more effi-
cient than an in-plane field to modulate the critical currents.
Later on, we will show that the fluxon state can be manipu-
lated not only by an in-plane field but also by a trans-
verse one.

5. Vortex state manipulation

A goal of quantum information technology is to control the
quantum state of a system, including its preparation, manip-
ulation, and measurement. In this section we will investigate
the state preparation and determination processes when one
vortex has been trapped in a CAJTJ.

5.1. Vortex trapping

The spontaneous trapping of a magnetic flux in the super-
conducting loop formed by either the bottom or top electrode
of a CAJTJ was achieved by repeatedly cooling the sample
below the critical temperature of niobium, T 9.2 Kc » , with
no bias current passing through the junction and no applied
field. The chip was heated above the critical temperature by a
voltage pulse applied to the integrated meander-line heater.
After the pulse the heat dissipates from the chip both through

the thermal contact with the Cu block and by the He exchange
gas inside the can. At the end of each quenching cycle the
possible spontaneously generated fluxons are static. An
external current supplied to the CAJTJ sets the fluxons (if
any) in motion around the annulus and quantized voltages
develop across the junction itself. After a successful trapping
attempt the number of trapped fluxons was determined from
the voltage of the zero-field step on the IVC. The trapping
probability was found to be about 10% and not rarely two
fluxons were trapped. Figures 9(a) and (b) show the profiles
of, respectively, the first and second zero-field step obtained
by sweeping the bias current with a triangular waveform. The
depinning of the fluxon(s) was observed as a switching from
the zero-voltage state at the current dg that was smaller by a
factor of about 5 than the critical current for the same junc-
tion, measured without trapped fluxons. This fact indicates the
presence of a deep potential well (or multiple degenerate
wells). For our samples the current branch associated with one
fluxon had an asymptotic voltage V 110 V1 m» which results
in an average speed, LV 1.1 10 m s1 0

7 1F » ´ - , con-
siderably smaller than the Swihart velocity, 1.5 10 m s7 1´ - ,
typical of all-Nb JTLs [57] evidencing, once again, that the
fluxon travels in the periodic potential[30]. Well pronounced
fine structures (generated by the resonant emission of plasma
waves by the fluxon) appear in the ZFS profiles which pro-
gressively disappear as the temperature is increased. It means
that at 4.2 K the actual losses in the experiment are weaker
than that taken for numerical simulations. Indeed, lower los-
ses should be used in the simulations to enhance the fine
structures. However, great care must be taken to simulate low
damping nonlinear systems, since, besides the longer tran-
sients, the results are very sensitive to the numerical algorithm
adopted to integrate the partial differential equation.

5.2. Vortex state preparation and determination

Sometimes, upon applying a small magnetic field the depin-
ning current becomes double-valued. This is a clear indication
that bistable states exist and, when the sweeping current
crosses zero, the decelerating fluxon can be trapped in two
different potential wells; this is a statistical process that
depends on the losses experienced by the fluxon and the
relative depths of the potential wells. A neat example of this
situation is given in figure 10(a) where the open dots show the
positive and negative depinning currents in a parallel field
measured by sweeping the bias current across junction A with
a triangular symmetric wave; double-valued depinning cur-
rents are clearly observed in a small magnetic range near the
zero whose values can differ by as much as few milliamperes.
The extrapolations of the almost linear branches help to locate
the perpendicular threshold field H 180 A m 1* » -

∣∣ , i.e., the
smallest magnetic field needed to prepare the fluxon state.
Indeed these extrapolations can be done even in the more
general cases when the double values are rare or even not
observed by sweeping the IVC.

It turned out that the vortex state could be reliably pre-
pared in either of the two possible states by simply applying
to an unbiased CAJTJ a parallel magnetic field whose

11

Supercond. Sci. Technol. 31 (2018) 025003 R Monaco et al



absolute strength exceeds H*∣∣ . The specific state depends on
the polarity of the applied field, in full agreement with the
numerical predictions of section 3.2. Once prepared, the state
of the static vortex can be read out by reducing the magnetic
field in a small range near zero and increasing or decreasing
the bias current until we observe a switch to a finite voltage.
The result of this single-sweep measure of the depinning
current unequivocally depends on the field polarity selected in
the state preparation. The measured single-sweep positive and
negative depinning currents are plotted as a function of the
parallel magnetic field in figure 10(b). We conventionally
named by Lñ∣ (Rñ∣ ) the state prepared by a field larger than H*∣∣
(smaller than H*- ∣∣ ). Apart from a small tilting due to the self-
fields, the data are quite symmetric and, as expected,

H Hd dg g-- + ( ) ( ). The only discrepancy with the predicted
behavior is that the depinning currents merge well before the
lowest one approaches zero, i.e., halving the effective field

range that allows the unambiguous identification of the
potential well where the resting vortex is located. Anyhow,
small depinning currents correspond to shallow potential
wells which can be smeared out by the thermal fluctuations
that were not taken into account in the numerical simulations.

As predicted, the reliable preparation of the vortex state
has been achieved also by means of a sufficiently large
perpendicular field and, unexpectedly, the state determination
has been found to be possible in a near-zero perpendicular
field, meaning that when the fluxon is depinned from its
original well it does not get trapped in the opposite well. This
indicates that even in the presence of a perpendicular field the
intra-well barrier of the current-tilted potential is comparable
to the inter-well barrier and that the friction experienced by
the fluxon is lower than that used in the numerical simula-
tions. In different words, data qualitatively similar to those
shown in figures 10(a) and (b) for a parallel field have been

Figure 8. Experimental threshold curves of our CAJTJs in a transverse magnetic field: (a) junction A, (b) junction B, (c) junction C, (d)
junction D. The extrapolated dotted lines help to locate the critical fields.
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obtained in the presence of a perpendicular field. Moreover,
the vortex state was found to be fully controllable even by
means of a transverse magnetic field. The procedure is the
same as for a parallel or perpendicular field and we will report
the data for the same junction considered before in
figures 10(a) and (b). First, as shown in figure 11(a), the
transverse threshold field, Hz*, is evaluated by recording the
magnetic field dependence of the depinning current while
continuously sweeping on the junction IVC; we see that the
double solutions are rare in this specific case. Later on, as
shown in figure 11(b), the single-sweep depinning currents
are measured after a preparation stage in which a large, either

positive or negative, transverse field is applied to the unbiased
junction. The transverse field has the advantage to be about
ten times more efficient. We like to note that no hysteretic
behavior has ever been observed during the (parallel or
perpendicular) magnetic scan of our samples.

6. Conclusions

We have studied a vortex two-state system based on an
annular JTJ delimited by two closely spaced confocal ellipses
that is characterized by a periodically modulated width. This

Figure 9. Recorded current–voltage characteristics at T 4.2 K= of a CAJTJ in the absence of an externally applied magnetic field with: (a)
one fluxon trapped (ZFS1) and (b) two fluxons trapped (ZFS2).

Figure 10. Vortex-depinning currents, dg , as a function of the in-plane magnetic field, HP . Measurements were recorded at T 4.2 K= using
junction A. (a) The open dots show the depinning currents measured by continuously sweeping the bias current as the magnetic field is
changed; the dashed lines are the extrapolations of the almost linear branches that help to locate the perpendicular threshold field H ;*∣∣ (b)
depinning currents of the Lñ∣ (open circles) and Rñ∣ (stars) state as a result of a single bias current sweep.
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spatial dependence, in turn, generates a periodic potential that
alternately attracts and repels the fluxons (or antifluxons). The
potential energy minima occur at two diametrically opposite
locations where the annulus is narrowest and the intra-well
potential height is uniquely determined by the CAJTJ aspect
ratio. This configuration is faithfully modeled by a modified
and perturbed one-dimensional sine-Gordon equation that
admits (numerically computed) solitonic solutions.

The proposed vortex qubit design has been tested
experimentally in the classical regime and bistable vortex
states were observed on high-quality Nb/Al–AlOx/Nb
CAJTJs having an aspect ratio 0.5r = . Preparation of the
vortex in a given potential well was achieved by means of an
external magnetic field of proper polarity applied either in the
barrier plane or in the transverse direction. The final state of
the vortex can be read out by performing an escape mea-
surement from one of the potential wells in the presence of a
small magnetic field. In our experiments carried out at
T 4.2 K= the fluxon escapes from a well in the tilted
potential by a thermally activated process. At lower tem-
peratures thermal activation as well as dissipation processes
are exponentially suppressed, and the magnetic field range
that allows the determination of the fluxon state is expected to
widen. The transition from the thermal to the quantum
regime, already observed in some Josephson junction sys-
tems, was typically found around 200 mK. Below this
crossover temperature the quantum nature of the fluxon
manifests as quantized energy levels within each potential
well and the fluxon escape occurs by macroscopic quantum
tunneling. Under sufficient decoupling from the environment,
as with other superconducting qubits, the superposition of the
macroscopically distinct states Lñ∣ and Rñ∣ , not yet observed
for JVQs, could be identified by means of the analysis of the
switching current probability distribution and employed to
implement a reliable JVQ.
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