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Josephson flux-flow oscillator: The microscopic tunneling approach
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We elaborate a theoretical description of large Josephson junctions which is based on Werthamer’s microscopic
tunneling theory. The model naturally incorporates coupling of electromagnetic radiation to the tunnel currents
and, therefore, is particularly suitable for description of the self-coupling effect in Josephson junction. In our
numerical calculations we treat the arising integro-differential equation, which describes temporal evolution
of the superconducting phase difference coupled to the electromagnetic field, by the Odintsov-Semenov-Zorin
algorithm. This allows us to avoid evaluation of the time integrals at each time step while taking into account
all the memory effects. To validate the obtained microscopic model of large Josephson junction we focus our
attention on the Josephson flux-flow oscillator. The proposed microscopic model of flux-flow oscillator does
not involve the phenomenological damping parameter, rather the damping is taken into account naturally in
the tunnel current amplitudes calculated at a given temperature. The theoretically calculated current-voltage
characteristics is compared to our experimental results obtained for a set of fabricated flux-flow oscillators of
different lengths.
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I. INTRODUCTION

A few years after discovery of the Josephson effect [1,2]
a complete microscopic description of tunnel junctions was
formulated within the tunneling Hamiltonian formalism [3–6].
As a result of this effort, the microscopic tunneling theory
(MTT) of Josephson tunnel junctions had emerged. The
MTT treated many of the experimentally observed tunneling
phenomena fairly satisfactorily, although a few discrepancies
had gradually shown up. One of them, the famous cos ϕ

problem [7,8], puzzled the scientific community for many
decades. Various experiments of the time [9–14] observed the
sign of phase-dependent dissipative current, also known as the
“cosine” or quasiparticle-pair interference term, to disagree
from the prediction of the MTT [15]. It was later suggested that,
in fact, either sign is possible, while the disagreement between
the theory and experiments can be explained by broadening
mechanisms which result in smearing of the Riedel peaks
[16,17]. The MTT has also been found to overestimate the
value of the critical current, which in real junctions turns out
to be depressed by strong coupling and/or proximity effects
[18–22]. In practice, one can account for this discrepancy by
a phenomenological suppression parameter [23].

The MTT has been highly successful in the descrip-
tion of quasiparticle tunneling in superconductor-insulator-
superconductor (SIS) structures and thus formed the foun-
dations for the SIS mixer theory motivated by the unique
properties offered by them in signal detection [24,25]. Uses of
the MTT include modeling SQUIDs [26,27], Josephson arrays
[28], and RSFQ logic gates and circuits [29–34]. While in
the early days the attention to the phase-dependent dissipative
current was motivated mainly by the cos ϕ problem, it has seen
a revival very recently [35–42]—this time, from the practical
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side: the phase-dependent dissipation has found application in
the proposal of superconducting memristor [37,38], has been
considered to be a source of relaxation in superconducting
qubits [39–42], and has even shown to be a powerful tool to
suppress dissipation in fluxonium qubit [36].

It is, however, unfair that large Josephson junctions had
been left behind in this glorious rise of the MTT. The
description of long junctions used today is still largely based
on the sine-Gordon equation derived for tunnel junctions by
Brian Josephson [43]. In the perturbed sine-Gordon equation
(PSGE) used to describe large Josephson junctions, the
damping effect is usually taken into account in the form
of a phenomenological “normal” losses term proportional
to the voltage [43]. It is common in theoretical studies of
large junctions to start from the PSGE as an initial point.
To solve the PSGE several perturbative approaches had been
proposed and widely used [44–49]. However, note that, while
the sin ϕ term describing the pair current can be justified
within the MTT as a limiting case of a very slow dynamics
compared to the gap frequency, the description of normal
losses by the pure resistive term is rather empirical and can
only be justified within a narrow temperature range close
to the critical temperature [50]: a condition which is rarely
satisfied in real experiments. One may argue, however, that
the resistive term in the PSGE is validated by the well tested,
resistively, and capacitively shunted junction (RCSJ) model
[51,52]. The RCSJ model, however, owes its popularity to the
externally shunted Josephson junctions for which it gives a
quantitatively correct description at an arbitrary temperature
[50]. Obviously, this is not the case of large Josephson
junctions which are rarely shunted. Incidentally, whereas the
MTT has been almost exclusively applied to small junctions,
large Josephson junctions should be the first in the queue to
take the cure. Owing to its naive treatment of damping, it is
not surprising that the PSGE is not capable of reproducing
essential characteristics of long Josephson junction such as
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subharmonic gap structures observed in experimental current-
voltage characteristics (IVC).

This paper is aimed at bridging the gap between the MTT
and the currently used description of large Josephson junctions.
In Sec. II we start off a revision of the MTT which we use in
formulating a microscopic model of 2D Josephson junction in
Sec. III. As an application of this model, in Sec. IV we focus
our attention to the Josephson flux-flow oscillator (FFO). To
validate the developed microscopic description of FFO we
compare the theoretically calculated IVCs to our experimental

results for a set of FFOs of different lengths. The last Sec. V
is devoted to discussion of a possible impact of the presented
results.

II. REVIEW OF MICROSCOPIC TUNNELING THEORY

The current I (t) through a Josephson junction coupled
to a time-dependent electromagnetic field was calculated by
Werthamer [5],

I (t) = Im
∫ ∞

−∞

∫ ∞

−∞
dω dω′{W (ω)W (ω′)ei(ω+ω′+2eVdc)t Ĩp(ω′ + eVdc) + W (ω)W ∗(ω′)ei(ω−ω′)t Ĩqp(ω′ + eVdc)}, (1)

where W (ω) is defined by the time dependence of the
superconducting phase difference,∫ ∞

−∞
W (ω)eiωtdω = exp

[
i

2
ϕ(t) − ieVdct

]
, (2)

ϕ(t) = 2e

∫ t

V (t)dt, (3)

where e > 0 is the magnitude of electron charge, V (t) is the
voltage across the junction, and Vdc is its dc component. Here
and in what follows we drop the Planck constant h̄ where its
presence is self-evident, and use the convention for the sign
of tunnel currents as in Refs. [16,24,25] [in Refs. [24,25] the
definition of W (ω) differs from ours by complex conjugation].
Within this convention the sign of the pair current components
is chosen to get a positive sign in the Josephson relation ϕ̇ =
2eV (t), and to restore the equality

I (t) = Re Ĩp(eVdc) sin ϕ+Im Ĩp(eVdc) cos ϕ+Im Ĩqp(eVdc) (4)

at a constant voltage. For a symmetric junction made
of identical superconductors, the Bardeen-Cooper-Schrieffer
(BCS) theory predicts singularities in the real parts (the
Riedel peaks), and steps in the imaginary parts of the tunnel
current amplitudes at the gap frequency ωg = 2�, where �

is the superconducting energy gap. The imaginary part of the
quasiparticle current Im Ĩqp(eVdc) can be directly measured
from the IVC of a voltage biased junction. There the step at
the gap frequency manifests itself as a sharp rise of current
at the gap voltage Vg ≡ ωg/e. In real systems, however, the
singularities and steps are smeared by several competing
effects [16–18].

Equation (1) can be rewritten in the time-domain form [53].
For this, we introduce the time-domain functions Ip(t) and
Iqp(t) which play a role of memory kernels and are related to
the tunnel current amplitudes Ĩp(ω) and Ĩqp(ω) by (note the
difference in the sign of ω in these two expressions [54])

Ĩp(ω) =
∫ ∞

−∞
Ip(t)e−iωtdt,

Ĩqp(ω) =
∫ ∞

−∞
Iqp(t)eiωtdt. (5)

The time-domain kernels in (5) take real values and satisfy
Ip,qp(t) = 0 for t < 0, which follow from the causality

properties [55] of Ĩp,qp(ω). Substituting (5) to (1), we obtain

I (t) =
∫ ∞

0

{
Ip(t ′) sin

[
ϕ(t) + ϕ(t − t ′)

2

]

+ Iqp(t ′) sin

[
ϕ(t) − ϕ(t − t ′)

2

]}
dt ′. (6)

Below we will be working with dimensionless units
introduced as follows. The time t is measured in units of the
inverse of angular Josephson plasma frequency ωJ ; also we
introduce the normalized tunnel current amplitudes

j̃p,qp(ξ ) ≡ RN

Vg

Ĩp,qp(ξωg), (7)

where RN is the normal resistance of the junction above the
gap. From (4) and (7) the critical current is then defined by the
real part of the pair current amplitude at zero frequency,

Ic = Vg

RN

Re j̃p(0). (8)

In dimensionless units the Eq. (6) for the normalized current
j (t) ≡ I (t)/Ic takes the form

j (t) = k

Re j̃p(0)

∫ ∞

0

{
jp(kt ′) sin

[
ϕ(t) + ϕ(t − t ′)

2

]

+ jqp(kt ′) sin

[
ϕ(t) − ϕ(t − t ′)

2

]}
dt ′, (9)

where k = ωg/ωJ is the normalized gap frequency, and
jp,qp(τ ) are normalized time-domain kernels related to j̃p,qp(ξ )
by the inverse Fourier transforms

jp(τ ) = 1

2π

∫ ∞

−∞
j̃p(ξ )eiξτ dξ,

jqp(τ ) = 1

2π

∫ ∞

−∞
j̃qp(ξ )e−iξτ dξ. (10)

For the purpose of numerical calculations it is convenient to
extract the normal resistance contribution from the quasipar-
ticle current [53]; introducing a reduced quasiparticle kernel
j̄qp(τ ) by setting

jqp(τ ) = −δ′(τ − 0) + j̄qp(τ ), (11)
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Eq. (9) becomes

j (t) = k

Re j̃p(0)

∫ ∞

0

{
jp(kt ′) sin

[
ϕ(t) + ϕ(t − t ′)

2

]

+ j̄qp(kt ′) sin

[
ϕ(t) − ϕ(t − t ′)

2

]}
dt ′ + αNϕt , (12)

where

αN = 1

2k Re j̃p(0)
(13)

is the damping coefficient due to a pure normal resistance.
Tunnel current amplitudes j̃p,qp(ξ ) were calculated the-

oretically by Werthamer [5] for zero temperature and Larkin
and Ovchinnikov [6] for arbitrary temperatures. Unfortunately,
the expressions for tunnel current amplitudes have often
been given with misprints, both in the reputable sources in
Josephson physics [8,50] and including the pioneering papers
of Werthamer [5] and Larkin and Ovchinnikov [6] themselves.
For convenience, we summarize the correct expressions for
tunnel current amplitudes in the Appendix and attach a
summary of misprints in the existing literature in Ref. [56].

The BCS theory typically predicts a higher pair current
than observed experimentally (see the discussion in the
Introduction). This discrepancy is taken into account by
introducing a phenomenological suppression factor of the
pair currents [23] j̃p(ξ ) → αsupp j̃p(ξ ), while keeping intact
the quasiparticle current. With this modification, the BCS
expression for the normalized critical current is

Re j̃p(0) = αsupp
π

4
tanh

ωg

4kBT
. (14)

III. MICROSCOPIC TUNNELING MODEL OF 2D
JOSEPHSON JUNCTION

It is straightforward to generalize the microscopic model
outlined above to a large Josephson junction of arbitrary 2D
geometry. We have, for the dynamics of the superconducting
phase difference ϕ(r,t),

∂2ϕ

∂t2
−

(
1 + β

∂

∂t

)
∇2ϕ + αN

∂ϕ

∂t
+ j̄ (r,t) = 0, (15)

j̄ (r,t) = k

Re j̃p(0)

∫ ∞

0

{
jp(kt ′) sin

[
ϕ(r,t) + ϕ(r,t − t ′)

2

]

+ j̄qp(kt ′) sin

[
ϕ(r,t) − ϕ(r,t − t ′)

2

]}
dt ′, (16)

where j̄ (r,t) now plays a role of the current density (up
to the subtracted normal current contribution), normalized
to Vg/ARN , where A is the total area of the junction. The
superconducting phase difference satisfies the Neumann-type
boundary condition

n ·
(

1 + β
∂

∂t

)
∇ϕ = ez · [n × h], (17)

where n is the in-plane outward normal and h is the normalized
magnetic field in units jcλJ .

Even though the memory kernels jp,qp(τ ) allow explicit
expression in terms of the Bessel functions (although only at

zero temperature [53]), the brute force approach to construct
a finite difference scheme to solve the Eq. (15) is struck with
computational difficulties due to the need to evaluate the time
integral (16) at each time step. This is especially not feasible
in the case of large junction where such evaluation is needed
at every node of the spatially discretized mesh. Therefore, an
efficient algorithm to evaluate (16) is highly desirable.

Such algorithm was proposed by Odintsov, Semenov, and
Zorin [32,57] (OSZ). Following this approach the time-domain
kernels are fitted by a sum of complex exponentials,

jp(τ ) = Re
N−1∑
n=0

An epnτ ,

j̄qp(τ ) = Re
N−1∑
n=0

Bn epnτ , (18)

where An, Bn, and pn (Re pn < 0) are complex parameters.
Their values are obtained by fitting the tunnel current am-
plitudes in the frequency domain, j̃p(ξ ) for the pair current
and ˜̄jqp(ξ ) = j̃qp(ξ ) − iξ for the reduced quasiparticle current,
by the Fourier transforms of the sums (18), in accordance
with the definition (10). Introduction of the exponentials (18)
allows one to avoid the direct evaluation of the integral (16).
Substitution of (18) to (16) splits the integral into a finite
number of composite parts whose values need only be updated
once per time step.

The first attempt to apply the OSZ algorithm to study
dynamics of a long Josephson junction based on the MMT was
made in Ref. [58], however, with a limited success: quantitative
and qualitative disagreement of the numerical model from the
analytical calculations were later realized [59] by the same
authors. Unfortunately, based on the poor performance of
their numerical model, authors of Refs. [58,59] had drawn
a conclusion about impossibility for the OSZ algorithm to
reproduce essential characteristics of real Josephson junctions
and ceased their studies. As we argue below, this conclusion
was premature: in fact, the mediocre performance of the
numerical model of Refs. [58,59] can be explained by the
improper fit of tunnel current amplitudes in the subgap region.
Furthermore, we show that with the use of (18), the OSZ
algorithm enables one to achieve the MTT description of a
Josephson junction, which is as good as if using the true
kernels. Given that the true kernels are never known exactly,
the minor difference between the two, if any, is irrelevant.

Our fit of tunnel current amplitudes by the expansion
(18) with N = 8 terms is presented in Figs. 1(a) and 1(b).
The fit was obtained by calculating the complex parameters
pn,An, Bn, which minimize the cost function

∑
X

∫ 2

0
D(Xfit,Xexact)2 dξ, (19)

where

D(Xfit,Xexact) ≡ |Xfit − Xexact|
max(τa/τr ,|Xexact|) (20)

is the relative difference between the fitted and exact functions
X = Re j̃p(ξ ), Im j̃p(ξ ), Re j̃qp(ξ ), Im j̃qp(ξ ), and τa,r are ab-
solute and relative tolerances, respectively. To stress a good
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FIG. 1. Amplitudes of the pair (a) and quasiparticle (b) tunnel
currents. Solid red and blue lines represent fit to the real and imaginary
parts of the pair and quasiparticle currents in the form of a sum
of exponents (18) with N = 8 terms. The exact theoretical tunnel
current amplitudes based on which the fitting was done are shown
by dashed lines for comparison. To illustrate the behavior of the
tunnel current amplitudes in the subgap region, 20× zoom of the
imaginary parts of the tunnel current amplitudes is shown in both
figures. Relative difference of the fitted and exact amplitudes defined
by Eq. (20) is shown in (c). Tunnel currents amplitudes in this figure
are presented without the account of the pair current suppression
(αsupp = 1).

performance of the obtained fit in the subgap region we redraw
the imaginary parts of the tunnel current amplitudes by scaling
them by a factor of 20: these are the curves which correspond
to the vertical axis on the right in Figs. 1(a) and 1(b). As
seen from the plot, the exact (dashed lines) and the fitted
amplitudes (colored lines) are practically indistinguishable. In
order to make the comparison possible, we plot the relative
difference defined by Eq. (20) in Fig. 1(c). As seen from
this figure, with τa/τr = 0.2 we are able to achieve relative
tolerance τr = 0.005 at an absolute tolerance τa = 0.001,
which is sufficiently beyond the accuracy with which BCS
tunnel current amplitudes can be relied on in description of
real systems. Finally, to convince ourselves that our own fit in
Fig. 1 gives physically reasonable results consistent with that
given by the true kernel functions, we carried out a numerical
calculation for a benchmark model of a single fluxon used in
Ref. [59] and obtained an agreement between our analytical
and numerical approaches. Details of this calculation will be
published elsewhere. In practice, we have found that it has been
always possible to reach a given precision by increasing the
number of the fitting terms in the expansion (18). Therefore,
the fit presented in Fig. 1 can be further improved should the
need arise (for this, it is enough just to add exponentials with
Im pn in the regions of frequencies where the fit deviates the
most). It is, however, satisfactory enough for the purposes this
fit is used for in the present paper.

Our numerical model with tunnel current amplitudes fitted
by the eight terms is only about three times slower than the
conventional PSGE discretized by the same scheme. Given
the complexity of the MTT, such a small difference between
the MTT and PSGE may seem surprising and is explained
as follows. The bottleneck of the numerical calculation with
the PSGE is evaluation of a trigonometric function (the sine).
In our numerical implementation of the MTT, only two such
evaluations per time step are required, regardless of the number
N of the fitting exponentials. This gives a slow down by a factor
of 2 plus some less significant N -dependent overhead. As a
result, the performance of the numerical scheme is weakly
dependent on the number of fitting exponentials.

To facilitate evaluation of the quasiparticle and pair cur-
rents, and to motivate future theoretical studies of Josephson
junctions based on the MTT, we designed C code MiTMoJCo
(Microscopic Tunneling Model for Josephson Contacts). MiT-
MoJCo is available as an open source under the GNU General
Public License [60] and can be used either in conjunction
with available FEM and FDTD solvers or as part of a finite
difference scheme in a standalone C code.

IV. MODEL OF JOSEPHSON FLUX-FLOW OSCILLATOR

An illustrative example of a Josephson system whose
current-voltage characteristics cannot be adequately described
within the PSGE is the Josephson flux-flow oscillator (FFO)
[61–64]. FFO is a long Josephson junction where a dense chain
of fluxons driven by the electric current excites electromag-
netic modes inside the junction. To accommodate multiple
fluxons and achieve a flux-flow regime, the length of the
Josephson junction used as a FFO exceeds the Josephson
penetration length by a large factor. The potential of FFO for
practical applications has been justified by development of a
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superconducting integrated receiver (SIR) [65,66] which was
successfully used in remote heterodyne spectroscopy of the
Earth atmosphere on board of a high-altitude balloon [67,68],
as well as first spectral measurements of THz radiation emitted
from intrinsic Josephson junction stacks (BSCCO mesa) at
frequencies up to 750 GHz [69,70].

To describe properties of FFO such as the linewidth
and IVC, all known theoretical studies of FFO rely on the
PSGE (see, e.g., Refs. [71–90], to name a few). The most
advanced of the FFO IVC models include a phenomenological
modification of the damping parameter [82,90] to reproduce
the self-coupling effect manifested in the experimental IVCs
[91]. In the microscopic model of FFO, which we introduce
below, such modification is not necessary as the coupling of
the junction to electromagnetic field comes naturally within
the formalism of the MTT. From the computational side, our
numerical model of FFO outperforms the voltage-dependent
damping model [82,90] as it is free from the iterative procedure

needed in the voltage-damping model to adjust the damping
parameter, rather, the dc component of voltage is obtained in
a single run. Indeed, as our performance study shows, during
one run of our simulation with the microscopic model, the
voltage-dependent model would only be able to perform three
iterations, which is far from being enough for the damping
parameter to settle (typically, 20–30 iterations were required
for convergence in Ref. [90]).

Typically, the radiation generated by a FFO is used to
drive a SIS mixer coupled via matching circuitry. To improve
impedance matching, the geometry of FFO is optimized by
tapering off the width of a junction towards its ends. For
realistic modeling of FFO, it is essential to take into account
such variation of the junction width. It is known [92] that
the two-dimensional model for long Josephson junction with
variable width can be reduced to a quasi-one-dimensional
model. In a similar way, the quasi-one-dimensional micro-
scopic model of FFO derived from (15) takes a form

ϕtt + αNϕt −
(

1 + β
∂

∂t

)
ϕxx − W ′(x)

W (x)

[
hext +

(
1 + β

∂

∂t

)
ϕx

]
+ j̄ (x,t) − eff(x) = 0, (21)

j̄ (x,t) = k

Re j̃p(0)

∫ ∞

0

{
jp(kt ′) sin

[
ϕ(x,t) + ϕ(x,t − t ′)

2

]
+ j̄qp(kt ′) sin

[
ϕ(x,t) − ϕ(x,t − t ′)

2

]}
dt ′, (22)

where the x-dependent superconducting phase difference ϕ(x,t) satisfies boundary conditions at the FFO’s ends,

ϕx(−L/2,t) = −hext, ϕx(L/2,t) + βϕxt (L/2,t) = −hext − σ (t). (23)

Here, L and W (x) are the normalized length and width of the
junction, respectively, σ (t) is the normalized electric current
via the load in units jcλJ W (L/2), and hext is the normalized
external magnetic field in units jcλJ . For an overlap junction
geometry and, assuming an in-plane symmetry along the x

axis, we have for the effective bias current

eff(x) = 2hγ (x)

W (x)
, (24)

where hγ (x) is the normalized magnetic field along the longest
dimension of FFO, induced by the bias current. The two are
related by the Maxwell equations which yield

2
∫ L/2

−L/2
hγ (x)dx = γ Ã, (25)

where Ã ≡ A/λ2
J is the normalized area of the junction and

γ is the bias current in units of the critical current Ajc. The
magnetic field hγ (x) is related to the distribution of current
in the electrodes feeding the FFO. Precise distribution of
the magnetic field around the FFO should follow from the
3D electromagnetic modeling with account of the leads, for
example, using the available software [84,93–95]. Note that the
model (24) of FFO with tapered ends implies the rise of the
effective bias current eff(x) towards the edges of the junction,
which is not related to the electrodynamics of the junction but
is merely a consequence of its geometry. For sufficiently sharp
ends and a linearly decreasing width W (x) ∼ �x in proportion
to the distance from the edges �x, the rise eff(x) ∼ 1/�x

can dominate the electrodynamic rise of the magnetic field

∼1/
√

�x in a superconducting strip [96]. Despite a number
of theoretical studies on the influence of an inhomogeneous
bias current [80,82,97,98] and, given the developed theory of
FFO with variable width [92,99–101], the effect of a purely
geometrical rise of the effective bias current (24) on the IVC
of a real FFO seems to be largely ignored.

The model of FFO coupled to the RC load proposed in
Ref. [71] has been widely used in a number of subsequent
theoretical studies [81,82,85,88,89,102]. However, the load
impedance of a realistic system may be very different from the
ideal case of a pure RC load. Thus a unified approach which
enables one to account for coupling of FFO to an arbitrary
load is highly desirable. Assume one end of a FFO is coupled
to a load described by a general impedance Z(ω). The time
derivative of the superconducting phase difference at the FFO
end is related to the load current σ (t) by the convolution,

ϕt (L/2,t) =
∫ t

0
z(t − t ′) σ (t ′)dt ′, (26)

where z(τ ) is the impulse response [103] defined by
the Laplace (Fourier) transform of the frequency domain
impedance Z(ω) normalized to the characteristic impedance
at the radiation end of FFO,

Zc ≡ h̄ωJ

2ejcλJ W (L/2)
. (27)

Equation (26) should be solved alongside the integro-
differential equation (21). We employ the same approach
for evolving Eq. (26) as was used for solving the
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integro-differential equation (21), that is, we fit the impulse
response by a series of exponentials in the same form as it was
done for the tunnel current amplitudes (18),

z(τ ) = RLδ(τ ) + Re
Nz−1∑
n=0

Cn eqnτ , (28)

where qn and Cn are complex parameters, and we separated
explicitly the Ohmic contribution described by the normalized
load resistance RL. At the end of the simulation, the power
radiated by FFO can be calculated by taking the time average,

PFFO = V 2
g

4Zck2
σ (t)ϕt (L/2,t). (29)

The model (26)–(29) is general and can be applied to
describe coupling of Josephson junction to an arbitrary load.
A simple case of a load resistance RL and a single term with
q0 = 0, C0 = 1/CL in Eq. (28) corresponds to the model of
RC load with parameters RL and CL used in Ref. [71] and the
subsequent works [81,82,85,88,89,102]. In this case, and with
the assumption of the single harmonics at Josephson frequency
dominating all other frequencies, Eq. (29) reduces to Eq. (6)
of Soriano [71].

V. COMPARISON TO EXPERIMENTAL RESULTS

FFOs of lengths 60, 80, 120, 180, 250, and 400 μm were
fabricated using the Nb-AlOx-Nb techonology. The details of
the fabrication process and design of the measurement system
are similar to the previous experimental studies of FFO (see,
e.g. Refs. [65,69,104–106]). The layouts of the FFO samples
were optimized for coupling to load by using the sharpened
edge geometries: the width 16 μm in the central region was
degraded linearly to about 1 μm on a distance 40 μm (30 μm
for the 60 μm junction) from either end. The experimentally
measured IVCs of two FFO samples of lengths 80 μm and
400 μm are shown in Figs. 2(a) and 2(b), respectively. Each
curve from the set of the shown IVC branches corresponds to
a fixed value of the external magnetic field. The color scale
denotes a relative increase of the SIS dc current, that is, 0 to
25% rise compared to the height of the current step Ig at the
gap voltage (the precise definition of Ig is given in Ref. [107]).

We used the microscopic description of FFO introduced
in the previous section for modeling the IVCs of the experi-
mental samples. The differential part of the integro-differential
equation (21) was discretized using the second order central
differences (for the derivatives ϕtt , ϕt , ϕxx , and ϕx), whereas
first order discretization was used for the terms with surface
damping β. Despite that the first order discretization introduces
an error O(β�t) per time step, due to the smallness of
β, the numerical scheme remains effectively second order
(compare the values β = 0.02 for the surface damping and
�t = 0.0227 for the time step used in our calculations).
This enables one to construct a semi-implicit scheme while
having at hand a convenient explicit expression for the
superconducting phase difference ready for the next step.
Note that in this scheme it is the normal resistance part
of the quasiparticle current in Eq. (11) that is taken into
account implicitly, while the rest of the tunnel current enters
explicitly. In our calculations we assume a homogeneously

fed FFO with hγ (x) = const, which, according to (24), results
in an increase of the effective bias current towards the
edges. To account the coupling to load, a realistic load
impedance was fitted by three terms in Eq. (28) with pa-
rameters C0 = C1 = C2 = 0.5, q0 = −0.02, q1 = −0.02 +
1.1i, q2 = −0.01 + 3.75i, and RL = 0.002. These values
were estimated from results of our MathCad calculation
for a real microwave circuit designed to provide wideband
coupling of FFO to a SIS detector [104,106]. According to
(28), the model impedance takes a form of a series of peaks
at normalized angular frequencies |Im qn| with characteristic
widths defined by |Re qn|. We take Zc = 1.6� as an estimate
of the characteristic impedance given by Eq. (27), Josephson
penetration length 5.5 μm, normalized gap frequency k = 3.3,
and surface damping parameter β = 0.02. We took the pair
current suppression parameter αsupp = 0.7 as a reasonable
estimate for the strong coupling correction for Nb junctions
[20,21] (the proximity effect [19,22] is expected to have a
smaller effect in our junctions, not exceeding 10% [18]). To
improve computation of dc voltage we used the optimum filtra-
tion procedure for a sinusoidal signal, introduced in Ref. [32].

The numerically calculated IVCs for the two experimental
samples whose IVCs were shown in Figs. 2(a) and 2(b) are
presented in Figs. 2(c) and 2(d). The color scale corresponds to
the output power in units V 2

g /Zck
2 calculated using Eq. (29)

and are cut at the value 0.12 to match the 25% saturation
threshold as in the experimental IVCs. Both in the experiments
and the numerical calculations, the bias current rises from zero
until reaching the end of the flux-flow branch (in the following,
referred to as maximal flux-flow current, MFFC). With further
increasing the current beyond the MFFC value, the state of the
junction switches from the flux-flow regime to the ordinary
phase rotation in the vicinity of the gap voltage.

The experimental and theoretical IVCs show a good overall
agreement, although few features in which the two differ can
be distinguished. First, the driving power of SIS mixer shown
by the color in the experimental IVCs exhibits few peaks and
dips related to the frequency-dependent coupling between the
FFO and SIS which is not taken into account in our theoretical
model. Nevertheless, our model does catch qualitatively the
expected power output of the FFO in the region of small
and moderate voltages. At voltages above about 1.4 mV the
theoretical model predicts a significantly higher power output
in contrast to the experimental IVC where a sharp crossover
to low SIS pumping is visible. This is attributed to the onset of
damping in the experimental superconducting circuits when
frequency of the FFO reaches the Nb gap frequency close to
700 GHz. Note that profiles of the experimental and theoretical
IVC branches at V > 1.4 mV are also qualitatively different,
which can be explained by influence of nonequilibrium effects.
Indeed, in the region where the Josephson frequency exceeds
the Nb gap frequency, splitting of Cooper pairs via absorption
of electromagnetic quanta results in excess of quasiparticles.
Such effects are not taken into account by the conventional
MTT derived in the assumption of the equilibrium occupation
of electron states. Development of the nonequilibrium MTT of
Josephson tunnel junctions, therefore, would be highly benefi-
cial for a complete theoretical description of Josephson FFO.

In general, shapes of the theoretical IVC curves match
well that of the experimental ones: all of them exhibit a
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FIG. 2. Experimental (a),(b) and theoretical (c),(d) IVCs of FFO. In experimental IVCs the color scale of its branches corresponds to the
rise in the SIS mixer dc current from 0 to 25% of the current step Ig at the gap voltage (the more precise definition of Ig is given in Ref. [107]).
The data for the SIS mixer where dc current rises above the 25% threshold is painted by the same (red) color as the 25% rise. Power output
in the numerical IVCs is expressed in units V 2

g /Zck
2 and is cut at the 0.12 threshold. Panels (a) and (b) show experimental IVCs of the FFOs

with length 80 μm and 400 μm, respectively. The corresponding numerical IVCs calculated with the use of the MTT are presented in (c) for
80 μm and (d) for 400 μm. Values of the normalized external magnetic field hext vary with the step 0.07 from 1.20 to 4.28. In both numerical
calculations Josephson penetration length is taken to be 5.5 μm, normalized gap frequency k = 3.3, surface damping β = 0.02, and pair current
suppression αsupp = 0.7.

sharp crossover at the voltage Vg/3 due to an increase in the
quasiparticle current and which is a direct manifestation of
self-coupling [91,108,109]. Both theoretical and experimental
IVCs for 400 μm junction exhibit a definite cusp at about
1.2 mV where the MFFCs of the IVC branches reach
minimum. The effect seems to have a universal character for
sufficiently long junctions and is exhibited also by FFOs of
lengths 250 and 180 μm.

The second feature, in which the theoretical and experi-
mental IVCs differ, is that above the boundary voltage Vg/3
most of the theoretical IVC branches have smaller MFFCs as
compared to the experimental curves. A possible explanation
could be the influence of the idle region [110–118] which
may have a stabilizing effect on the dynamics of FFO and,
presumably, affect the values of MFFCs. Influence of the
idle region on the dynamics of FFO has been neglected
in our theoretical treatment (except for the renormalization
of Josephson penetration length on which it has an effect
[115,116]). The proper account of the idle region requires
upgrading the model (21) to the full 2D problem (15) coupled
to the Maxwell equations inside the idle region. On the other

hand, value of MFFCs may also be influenced by coupling to
the load and affected by the losses in the matching circuitry. In a
more advanced model of the coupling, the dynamics of the SIS
junction and propagation of the electromagnetic waves with
multiple reflections in the matching circuits should be solved
simultaneously with (15). Due to the complexity of these
factors, and because of their dependence on specific details of
the experimental setup, we leave this problem to future studies.

It is interesting to note that FFOs with small lengths exhibit
Fiske steps even in the region of high voltages V > Vg/3
where these are normally suppressed in longer FFOs by
the onset of damping. Fiske steps are well pronounced for
the 60 μm and 80 μm junctions and are marginally visible
for the 120 μm junction. In our numerical calculations the
crossover is influenced by the surface damping β and the
pair current suppression parameter αsupp. Presence of the latter
favors the quasiparticle current and thus increases the role of
damping. From the Fiske step visibility crossover manifested
for the FFO length of about 120 μm, an upper limit on
the surface damping can be estimated to be roughly 0.03 at
αsupp = 0.7 and T = 4.2 K. A smaller value β = 0.02, used
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in Fig. 2, is obtained by fitting the IVC of the longest (400
μm) junction in the Fiske region area (V < Vg/3). In our
comparison of the experimental and theoretical IVC curves
we find a tendency towards smaller β in the small voltage
region (V < Vg/3) and a larger β in the high voltage region
(V > Vg/3). Although the observed tendency is within an error
margin, and, furthermore, is subjected to the uncertainty in
values of other parameters, if confirmed, this could indicate
that the surface damping by itself can be frequency dependent.

To conclude this section, the presented theoretical model
of FFO lays fundamentals for modeling of a realistic FFO.
The self-coupling effect observed in the experimental IVCs
is caught naturally within the methodology of the MTT.
In fact, due to the important role played by coupling of
tunnel currents and electromagnetic waves in the dynamics
of superconducting phase difference, it is evident that any
realistic modeling of FFO should rely on the MTT.

VI. DISCUSSION

The presented microscopic approach can give a fresh look at
the rich physics and variety of phenomena in large Josephson
junctions. Apart from the example of the conventional FFO
studied here, an admittedly incomplete list of the affected
systems and phenomena includes detection and excitation of
subterahertz sound by long Josephson junctions [119,120],
Cherenkov [121,122] and exponentially shaped [92,99–101]
FFOs, transmission line intersections and networks [123–128],
Josephson frequency comb generators [129,130], annular
Josephson junction [131,132] and its variations [133–135],
linear [136] and nonlinear [137,138] fluxon modes in 2D
junctions, Josephson vortex qubits [139–142], pumps [143]
and ratchets [144–150].

To foster further research in this area and to enlarge the
range of applications of the MTT, we created numerical library
MiTMoJCo [60]. Our theoretical results supported by a good
agreement with the experimentally measured IVCs of several
FFOs validate the use of MiTMoJCo in studies of other
Josephson systems.

The described model naturally incorporates the phase de-
pendent dissipation. This term has recently attracted particular
attention because of the control it gives over quasiparti-
cle relaxation in qubits. Understanding effects associated
with quasiparticle tunneling is of crucial importance for
developing superconducting qubits such as fluxonium [36]
as well as Majorana-based topologically protected qubits

based on superconductor-semiconductor hybrid systems
[151–162]. Interestingly, the numerical approach to quasiparti-
cle tunneling implemented here is not limited to description of
superconducting systems, but may, in principle, be applied
to semiconductor superlattices [163,164] where analogous
photon-assisted tunneling effects arise in the presence of
bichromatic and polychromatic driving field [165–167].
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APPENDIX: TUNNEL CURRENT AMPLITUDES

Fora symmetric junction made of identical superconductors
the normalized tunnel current amplitudes at T = 0 are

Re jp(ξ ) =
{ 1

2 K(ξ 2), |ξ | < 1,
1

2|ξ | K
(

1
ξ 2

)
, |ξ | > 1,

(A1)

Im jp(ξ ) =
{

0, |ξ | < 1,

− 1
2ξ

K
(
1 − 1

ξ 2

)
, |ξ | > 1,

(A2)

Re jqp(ξ ) =
{

1
2 K(ξ 2) − E(ξ 2), |ξ | < 1,(|ξ | − 1

2|ξ |
)
K

(
1
ξ 2

) − |ξ |E( 1
ξ 2 ), |ξ | > 1,

(A3)

Im jqp(ξ ) =
{

0, |ξ | < 1,

ξ E
(
1 − 1

ξ 2

) − 1
2ξ

K
(
1 − 1

ξ 2

)
, |ξ | > 1,

(A4)

where ξ = ω/ωg and K,E are complete elliptic integrals of
the first and second kind correspondingly. Here we use the
convention of elliptic functions taking the square of the elliptic
modules as an argument (note that Refs. [5,8,50] use a different
convention for the elliptic integrals).

Current amplitudes at arbitrary temperature T � 0 were
given by Larkin and Ovchinnikov [6]. For the Josephson
junction formed by superconductors with gap energies δ1 ≡
�1/ωg and δ2 ≡ �2/ωg normalized to the gap frequency
ωg ≡ �1 + �2,

Re j̃p(ξ ) = δ1δ2

2

∫ ∞

−∞
tanh (α|η|)

{
�(δ1 − |η − ξ |) �(|η| − δ2)√

δ2
1 − (η − ξ )2

√
η2 − δ2

2

+ �(|η| − δ1) �(δ2 − |η + ξ |)√
η2 − δ2

1

√
δ2

2 − (η + ξ )2

}
dη, (A5)

Im j̃p(ξ ) = δ1δ2

2

∫ ∞

−∞
{tanh [α(η + ξ )] − tanh (αη)} sgn(η) sgn(η + ξ ) �(|η| − δ1) �(|η + ξ | − δ2)√

η2 − δ2
1

√
(η + ξ )2 − δ2

2

dη, (A6)

Re j̃qp(ξ ) = − 1

2

∫ ∞

−∞
|η| tanh(αη)

⎡
⎣ (η − ξ ) �(|η| − δ1) �(δ2 − |η − ξ |)√

η2 − δ2
1

√
δ2

2 − (η − ξ )2
+ (η + ξ ) �(|η| − δ2) �(δ1 − |η + ξ |)√

η2 − δ2
2

√
δ2

1 − (η + ξ )2

⎤
⎦dη, (A7)

Im j̃qp(ξ ) = 1

2

∫ ∞

−∞
{tanh [α(η + ξ )] − tanh(αη)} |η||η + ξ | �(|η + ξ | − δ1) �(|η| − δ2)√

(η + ξ )2 − δ2
1

√
η2 − δ2

2

dη, (A8)
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where α ≡ ωg/2kBT . The correspondence to the original Larkin’s [6] expressions I1,2,3,4 in their formula (22) is established by
Re j̃p(ξ ) = I1/ωg, Im j̃p(ξ ) = I2/ωg, Re j̃qp(ξ ) = −I4/ωg, and Im j̃qp(ξ ) = I3/ωg . Note that the original Larkin’s expressions
contain an error in their formula for I1 which was corrected here (see our note in Ref. [56] for details). One may also check that
Eqs. (A5)–(A8) reduce to (A1)–(A4) in the zero temperature limit.

To obtain tunnel current amplitudes in Fig. 1 we assumed a symmetric junction (δ1 = δ2 = 1/2) and smoothed the amplitudes
by introducing a phenomenological peak width parameter 2δ as described in Ref. [16],

Re j̃p,qp(ξ ) → Re j̃p,qp(ξ ) − ξ Re j̃p(0)

2π
ln

{
[(1 − ξ )2 + δ2](1 + ξ )2

(1 − ξ )2[(1 + ξ )2 + δ2]

}
, (A9)

Im j̃p,qp(ξ ) → Im j̃p,qp(ξ ) − ξα eα

2 (1 + eα)2
ln

ξ 2 + δ2

ξ 2
± ξ Re j̃p(0)

2

[
2

π
arctan

(1 − ξ )

δ
− sgn(1 − ξ )

+ 2

π
arctan

(1 + ξ )

δ
− sgn(1 + ξ )

]
, (A10)

where the plus and minus signs in front of the square bracket in the last expression correspond to the pair and quasiparticle
currents, respectively. Parameter δ was estimated by comparing the smoothed Im j̃qp(ξ ) to the experimental IVC of voltage biased
SIS mixer. We found that δ = 0.008 gives a good match to the measured mixer IVC. We used this value in calculation of tunnel
current amplitudes in Fig. 1.

Finally, the suppression of the pair current is taken into account by performing the replacement [23],

j̃p(ξ ) → αsupp j̃p(ξ ). (A11)
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