РАЗРАБОТКА ПРИЁМНОГО ЭЛЕМЕНТА ТГЦ ИЗЛУЧЕНИЯ НА ОСНОВЕ СИС ПЕРЕХОДОВ

К.И. Рудаков^{1,2}, П.Н. Дмитриев², А.М. Барышев³, А.В. Худченко^{2,3}, В.П. Кошелец² ¹Московский физико-технический институт (государственный университет) <u>rudakov@phystech.edu</u>, ²Институт радиотехники и электроники им. В.А. Котельникова РАН <u>pavel@hitech.cplire.ru</u>, valery@hitech.cplire.ru, ³Организация космических исследований Нидерландов(SRON) <u>A.M.Baryshev@sron.nl</u>, <u>A.Khudchenko@sron.nl</u>

Проведено исследование сверхпроводникового приёмника терагерцового диапазона в полосе частот 0,7 -1,1 ТГц. Для определения электрофизических параметров структуры было проведено сравнение экспериментально измеренных характеристик приемника с результатами численного моделирования сверхпроводникового приемного элемента на основе сверхпроводник-изолятор-сверхпроводник (СИС) переходов NbTiN-Nb-AlN-NbN. В результате выполнения данного исследования были проведены измерения четырех модификаций приемного элемента, предложен способ полного 3d моделирования сверхпроводниковой структуры, определена удельная ёмкость СИС перехода, для используемой технологии величина Суд = 80 фФ/мкм². Разработан и измерен новый прототип на основе 1 СИС перехода. Конечной целью данного исследования является разработка сверхпроводникового приёмника в диапазоне 0,79 - 0,95 ТГц с шумовой температурой не выше 200 К, для телескопа APEX (Atacama Pathfinder Experiment).

В 2006 г. в рамках проекта СНАМР для телескопа АРЕХ (Atacama Pathfinder Experiment) был разработан и изготовлен высокочувствительный приёмник. Прибор, установленный на радиотелескопе в Чили, состоит из двух 7-пиксельных матриц [1] гетеродинных приёмников, работающих в диапазонах 600 - 720 ГГц и 790 - 950 ГГц, которые соответствуют окнам прозрачности атмосферы. Высокочувствительными элементами прибора являются смесители на основе туннельных переходов сверхпроводник-изолятор-сверхпроводник (СИС) Nb-AlN-NbN. Однако приёмники верхнего частотного диапазона имеют сравнительно высокую шумовую температуру - порядка 400 К. Для улучшения чувствительности телескопа был открыт проект СНАМР_НI+, целью которого является создание сверхпроводникового приёмника с шумовой температурой порядка 200 К, работающего в диапазоне 790 – 950 ГГц.

Данная работа посвящена разработке нового варианта приёмного элемента диапазона 790-950 ГГц. Прототип приёмника этого диапазона был разработан в институте космических исследований Нидерландов. Смесительный элемент приёмника выполнен по планарной технологии на кремниевой подложке и состоит из антенны, согласующей структуры, системы ПЧ фильтров в диапазоне 4 - 12 ГГц и детектора на основе двух СИС переходов. Микрофотография структуры изображена на «рис. 1». Приемная структура была изготовлена в ИРЭ им. В.А. Котельникова РАН. Проведено численное электромагнитное 3D моделирование всей структуры приёмника, его результаты сопоставлены с экспериментально измеренным на Фурье-спектрометре частотно зависимым откликом («рис. 2»).

Первичный расчёт структуры производился на основе модели микрополосковых линий с учетом частотнозависимых потерь. Ввиду использования сверхпроводящих материалов формулы аналитического расчета требуют уточнения; а именно, для учёта эффекта Мейснера [2] применяется эффективная диэлектрическая проницаемость [3], а для учёта поверхностных потерь используется теория поверхностной проводимости Маттиса-Бардина [4]. В расчётной системе СST происходит численное решение электродинамической задачи, специфику сверхпроводимости можно учесть путём задания матрицы поверхностного импеданса материала, используя теорию Маттиса-Бардина [4, 5]. Последовательно изменяя значения удельной ёмкости СИС переходов в расчёте, была определена удельная ёмкость используемых переходов-80 фФ/мкм². Ввиду малых размеров СИС переходов в парном детекторе, даже небольшое различие между тунельными переходами может привести к трудностям с полным подавлением критического тока, что ухудшит шумовую температуру. Анализ теоретических кривых отклика туннельных СИС переходов в двухпереходном детекторе показал, что один из переходов работает вне диапазона 790-950 ГГц. По совокупности этих причин было принято

решение спроектировать однопереходный вариант приёмного элемента. Соответствующий дизайн был спроектирован, изготовлен и измерен.

Отстройка емкости СИС перехода производится в однопереходном дизайне последовательной индуктивностью. На «рис. 3» проиллюстрирована схема дизайна на основе 1 СИС перехода. Трёхблочная и четвертьволновая секции трансформатора обеспечивают согласование между пробойзондом и отстроенным СИС переходом. Из-за возможных уходов размеров СИС перехода при изготовлении были спроектированы 3 различных дизайна приёмного элемента, оптимизированные для площади СИС перехода 0,33, 0,5 и 0,75 мкм² при удельной ёмкости 80 фФ/мкм². Типичная теоретическая кривая согласования СИС перехода и подводящей внешнее излучение волноводной структуры для оптимальных параметров плёнок и СИС переходов представлена на «рис. 4».

Шумовая температура приёмника является важнейшей характеристикой приёмного устройства. Её измерение проводилось методом горячей - холодной нагрузки. В качестве холодной нагрузки был использован поглотитель при температуре жидкого азота, в качестве горячей – нагрузка при комнатной температуре. В качестве гетеродина использовался сигнал высокостабильного генератора (каскад умножителей, на который подается усиленный сигнал синтезатора частоты). Каптоновая плёнка использовалась как делить оптического пучка. Шумовая температура прототипа приёмника на основе 1 СИС перехода, в большей части целевого диапазона частот, оказалась ниже, чем для ТВИН («рис. 5»).

С целью уточнения дальнейших расчетов будущих дизайнов потребовалось разработать метод определения эффективной глубины проникновения в плёнки микрополосковой линии. Для решения этой задачи были спроектированы и изготовлены специальные тестовые образцы. Физическая идея метода основана на том, что собственные частоты микрополоскового резонатора определяются его длиной, а также погонной ёмкостью и индуктивностью, что позволяет подобрать в расчёте резонансной частоты линии Лондоновскую глубину проникновения для наилучшего согласия резонансной частоты с экспериментом. В качестве источника СВЧ сигнала используется СИС переход, включённый в центр резонатора. («рис. б»)

Данная работа выполнена в рамках Соглашения с Минобрнауки РФ № 14.607.21.0100 (идентификатор проекта RFMEFI60714X0100) и ТОП100 МФТИ.

Рис. 1. Фото центральной части смесительного элемента на основе структуры с двумя параллельно соединенными СИС-переходами Nb/Al-AlNx/NbN площадью 0.5 мкм² (нижний подводящий электрод выполнен из NbTiN, верхний электрод - из Al).

Рис. 2. Сравнение экспериментального отклика смесительного элемента от частоты с расчетным. Непрерывная кривая - теоретический полный отклик, пунктирная кривая - эксперимент, штрихпунктирная кривая – рассчитанные отклики отдельных СИС переходов в ТВИН структуре.

Рис. 3. Схема приёмного элемента на основе 1 СИС.

Рис. 4. Теоретический уровень согласования для оптимальных параметров.

Рис. 5. Аппроксимация измеренной шумовой температуры для приёмников с одним СИС переходом (экспериментальные данные обозначены квадратами) и ТВИН включение СИС переходов (экспериментальные данные обозначены окружностями).

Рис. 6. Топология микрополоскового резонатора для определения Лондоновской глубины проникновения.

ЛИТЕРАТУРА

1. Kasemann C., Güsten R., Heyminck S., Klein B., Klein T., Philipp S.D., Korn A., Schneider G., Henseler A., Baryshev A., Klapwijk T.M., «CHAMP+: a powerful array receiver for APEX», Proc. of SPIE, 2006, Vol. 6275, -C. 62750N-62750N12.

2. Бароне А., Патерно Дж-Ф. «Эффект Джозефсона. Физика и Применения». – М.: Мир, 1984. - 640с.

3. К.И.Рудаков, В.П.Кошелец, «Определение высокочастотных параметров сверхпроводниковых тонкопленочных структур», Нелинейный мир,2014, №2, с.20-21.

4. J. P. Turneaure, J. Halbritter, H. A. Schwettman, «The Surface Impedance of Superconductors and Normal Conductors: The Mattis-Bardeen Theory», -Journal of Superconductivity, 1991, vol.4, No.5, -C.341-354.

5. Zhou, Shi-Ping; Jabbar, A.; Bao, Jia-Shan; Wu, Ke-Qin; Jin, Bian-Jun, Analytical solution of Mattis– Bardeen theory for surface impedance of superconductors», J Appl Phys. -1992, vol.71, -C. 2789-2794.