The 9th International Symposium on Intrinsic Josephson Effects and THz Plasma Oscillations in High-Tc Superconductors (THz-PLASMA 2014) Kyoto Univ., Kyoto, Japan, November 30- December 3, 2014

Hot Spots and THz Waves in Bi₂Sr₂CaCu₂O₈ Intrinsic Josephson Junction Stacks: Recent Developments

B. Groß^a, F. Rudau^a, M. Tsujimoto^{a,b}, T. Judd^a, N. Kinev^c, M. Ji^{d,e}, J. Yuan^e, D. Y. An^{d,e}, M. Y. Li^{d,e}, X. J. Zhou^{d,e}, Y. Huang^d, H. C. Sun^d, Q. Zhu^d, J. Li^d, T. Hatano^e, W. W. Xu^d, B. B. Jin^d, P. H. Wu^d, D. Koelle^a, V. P. Koshelets^c, H. B. Wang^{d,e} and R. Kleiner^{a*}

 ^a Physikalisches Institut and Center for Collective Quantum Phenomena in LISA⁺, Tübingen, Germany
^b Kyoto University, Kyoto, Japan
^c Kotel'nikov Institute of Radio Engineering and Electronics, Moscow, Russia
^d Research Institute of Superconductor Electronics, Nanjing, China

^eNational Institute for Materials Science, Tsukuba, Japan

*Corresponding author E-mail address: kleiner@uni-tuebingen.de Phone: +49-07071-2976315, Fax: +49-07071-5406

[keywords] Intrinsic Josephson junctions, THz emission, Hotspots, Low Temperature Scanning Laser Microscopy, Linewidth of radiation

Stacks of intrinsic Josephson junctions made of the high temperature superconductor $Bi_2Sr_2CaCu_2O_8$ [1] emit coherent radiation at THz frequencies [2,3]. Emission can occur at relatively low bias but also at large input power. At high bias a hot spot forms [4], affecting both the intensity and the linewidth of THz radiation [5]. Despite of several years of research the mechanism of synchronizing the junctions in the stack and the relation of hotspots and THz emission is still under debate [6]. We investigated THz emission and hotspot formation using a combination of transport measurements, electromagnetic wave detection via a superconducting receiver and low temperature scanning laser microscopy [3,4,5]. In this talk recent experimental results of our collaboration will be presented and compared to numerical simulations.

References

- [1] R. Kleiner and P. Müller, Phys. Rev. B 49, 1327 (1994).
- [2] L. Ozyuzer et al, Science **318**, 1291 (2007).
- [3] U. Welp, K. Kadowaki, and R. Kleiner, Nature Photonics 7, 702 (2013).
- [4] H. B. Wang, et al., Phys. Rev. Lett., 102, 017006, (2009).
- [5] D. Y. An, et al., Phys. Rev. Lett. 102, 092601 (2013).
- [6] H. Minami, et al, Phys. Rev. B 89, 054503 (2014).