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Abstract
The properties of Josephson devices are strongly affected by geometrical effects such as those
associated with the magnetic field induced by the bias current. The generally adopted analysis
of Owen and Scalapino (1967 Phys. Rev. 164, 538) for the critical current, Ic, of an in-line
Josephson tunnel junction in the presence of an in-plane external magnetic field, He, is
revisited and extended to junctions whose electrodes can be thin and of different materials,
i.e., of arbitrary penetration depth. We demonstrate that the asymmetry of the magnetic
diffraction pattern, Ic(He), is ascribed to the different electrode inductances, for which we
provide empirical expressions. We also generalize the modeling to the window-type junctions
used nowadays and discuss how to take advantage of the asymmetric behavior in the
realization of some superconducting devices. Further we report a systematic investigation of
the diffraction patterns of in-line window-type junctions having a number of diverse
geometrical configurations and made of dissimilar materials. The experimental results are
found to be in agreement with the predictions and clearly demonstrate that the pattern
asymmetry increases with the difference in the electrode inductances.

1. Introduction

In the first years after the discovery of the Josephson effect
it was realized that, as the size or the critical current of
a planar Josephson tunnel junction increases, the influence
of the magnetic field induced by the Josephson current
itself becomes more and more important [1–4]. Significant
advances in the modeling of the so-called self-field effects
were made by Owen and Scalapino (OS) [5], who considered
the geometrical configuration most suitable to analyze the
self-field, namely, the one-dimensional in-line geometry
shown in figure 1(a), where the externally applied bias current,
I, flows in the direction of the long dimension, L. The figure
also shows the coordinate system used in this work. Long
Josephson tunnel junctions (LJTJs), i.e., junctions whose

dimension L perpendicular to an externally applied magnetic
field, He, is large compared to the Josephson penetration
depth, λj, behave like an extreme type-II superconductor; they
exhibit a Meissner effect in weak magnetic fields, and vortex
penetration starts at a critical field Hc. This behavior can be
probed into by studying the magnetic field dependence of the
maximum tunneling supercurrent, Ic, because the Meissner
region and the vortex structure are reflected in the Ic versus
He curve in a very characteristic way. The strength of the
current-induced field is measured by the ratio L/λj. The
OS analysis was restricted to the ideal case in which the
junction electrodes had the same width and were made of the
same bulky material. Despite these severe restrictions, the OS
modeling has been used without further consideration for the
design of any device based on LJTJs. One of the purposes of
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Figure 1. (a) Schematic of an in-line junction with symmetric current bias, I, in the presence of an external magnetic field, He, applied
along the Y-axis. (b) Simplified vertical cross section (drawn not to scale) of an in-line Josephson tunnel junction. The junction top
electrode is in gray, while the base electrode is in black; the tunneling insulating layer in between is hatched. Also shown is the coordinate
system used in this work.

the present work is to generalize the OS theory by taking into
account geometrical or electrical differences in the electrodes.
We will extend our interest also to junctions fabricated
with the so-called whole wafer processes, which make use
of a tri-layer structure from which individual junctions are
later defined. Due to the large diffusion of these reliable
processes, window junctions have become widespread while,
in contrast, naked (or bare) junctions are a rarity. While
the interaction of the Josephson tunnel junction with its
embedding circuitry has received exhaustive and adequate
attention [6–9], the changes due to the self-field effects still
remain an unexplored topic, albeit the exact knowledge of the
current-induced field is highly desirable for the realization of
superconductor devices based on LJTJs such as, for example,
oscillators [10], magnetic sensors [11], rectifiers [12] and
ballistic fluxon qubit readouts [13]. Besides modeling, a
thorough experimental investigation of the self-field effects
has been carried out for window-type Nb-based LJTJs having
an in-line configuration and electrodes of different widths,
thicknesses and materials. The results are well aligned with
the expectations and demonstrate that window-type LJTJs can
be designed with a greater flexibility in the control of the
self-field effects. The issue of the asymmetry in the threshold
curves of Josephson devices was introduced long ago and its
importance was recognized in determining the performances
of amplifiers [14] and magnetometers [15]. Currently, the
search for new and better ways to achieve and control the
asymmetry is still ongoing [16, 17].

2. Modeling

2.1. Background review

In its simplest form, the area of a planar Josephson tunnel
junction is defined by the overlap of two superconducting
films with a rectangular cross section and weakly coupled
through a thin tunneling barrier. Figure 1(b) depicts the
vertical cross section of an in-line Josephson tunnel junction.
An in-plane external magnetic field, He, is applied in the
Y-direction, i.e., perpendicular to the junction length. The

very thin insulating layer between the superconducting films
has length L and width W (not shown). Ib(X) and It(X) denote
the local supercurrents flowing, respectively, in the bottom
and top junction electrodes within a distance of the order of
the penetration depth from the film surfaces and parallel to
the insulating layer. X ∈ [−L/2,L/2] is the laboratory spatial
coordinate. Throughout the paper the subscripts b and t refer
to the base and top electrode, respectively. Further the currents
are positive when they flow from the left to the right. In the
vast majority of practical cases the junction electrodes are
comparable or thinner than their penetration depths and the
currents can be well assumed to be uniformly distributed over
the film cross section. Ib and It also take into account the
screening currents, Isc, that circulate to expel the magnetic
field from the interior of the junction.

For in-line LJTJs, it is important to distinguish between
the symmetric and asymmetric biasing: in the former, the bias
current, I, enters at one extremity and exits at the other [5,
18, 19]: It(L/2)= Ib(−L/2)= I and It(−L/2)= Ib(L/2)= 0,
while in the latter, the bias current enters and exits from the
same extremity [1, 18, 20, 21]: It(−L/2) = −Ib(−L/2) = I
and Ib(L/2) = It(L/2) = 0.

The gauge-invariant phase difference φ of the order
parameters of the superconductors on each side of the tunnel
barrier obeys the Josephson equations [22]

JZ(X) = Jc sinφ(X), (1a)

κ∇φ(X) = H× n̂, (1b)

in which JZ is the Josephson current density and Jc is
its maximum (or critical) value, which is assumed to be
uniform over the barrier area. Equation (1b) states that
the phase gradient is everywhere proportional to the local
magnetic field H and parallel to the barrier plane. Here n̂
is the vector normal to the insulating barrier separating the
superconducting electrodes and κ ≡ 80/2πµ0dm has the
dimension of a current (80 is the magnetic flux quantum
and µ0 is the vacuum permeability). Neglecting the insulating
barrier thickness [23],

dm = λb tanh
db

2λb
+ λt tanh

dt

2λt
, (2)

2
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is the junction magnetic thickness and λb,t and db,t are,
respectively, the bulk magnetic penetration depths and
thicknesses of the films. Equation (2) reduces to dm ' λb+λt

in the case of thick superconducting films (db,t > 4λb,t). The
net current, I, crossing the tunnel barrier is given by

I ≡ W
∫ L/2

−L/2
JZ(X) dX. (3)

Throughout this paper we will limit our interest to the
zero-voltage time-independent state; this can be achieved
as far as I is smaller than the junction critical current,
Ic. We also assume that the junction width, W, is smaller
than the Josephson penetration depth [1, 22, 24], λJ =√
80/2πµ0djJc, setting the length unit of the physical

processes occurring in the Josephson junction; here dj is the
junction current thickness [23] (see later)

dj = λb coth
db

λb
+ λt coth

dt

λt
≥ dm. (4)

For thick film junctions, dj ' dm ' λb + λt. By its definition,
κ ≡ (dj/dm)Jcλ

2
J .

It is well known [1, 5] that combining equations (1a)
and (1b) with the static Maxwell’s equations, a static
sine-Gordon equation is obtained that describes the behavior
of a one-dimensional in-line LJTJ

λ2
J

d2φ

dX2 = sinφ(X). (5)

Equation (5) was first introduced by Ferrel and Prange [1]
in 1963 in the analysis of asymmetrically biased in-line
LJTJs; a few years later, OS [5] reported an extensive study
of its analytical solutions in terms of elliptic functions for
symmetrically biased in-line junctions (provided that L ≥
πλJ/2). As reported by several authors [18, 20, 25], the largest
supercurrent carried by a very long in-line LJTJ is 4I0, where
I0 ≡ JcWλJ is a characteristic junction current (generally
from a fraction of a milliampere to a few milliamperes) and
depends on the junction normalized length, ` ≡ L/λJ, as
I0(`) = I0 tanh `/2.

As already stated, for small fields a LJTJ behaves as
a perfect diamagnet by establishing circulating screening
currents which maintain the interior field at zero. This
Meissner regime is reflected by a linear decrease of Ic with
He. The threshold curves, Ic(He), have been the subject of
many analytical, numerical and experimental works [26–28].
It is well known that the critical magnetic field is [29, 7]
Hc = 80/πµ0λJdm = 2JcλJdj/dm. The gradual crossover
of Hc from short (` � 2π ) to long (` > 2π ) junctions
has been numerically computed [30] and it was found to
be well described by the empirical relationship: Hc(`) =

Hc coth `/π , in very good agreement with the experimental
findings reported in [29]. Note that in the small junction limit,
`→ 0, we recover Hc = 80/µ0Ldm and the Fraunhofer-like
magnetic diffraction pattern (MDP).

2.2. Boundary conditions

In this section we will derive the boundary conditions for an
in-line junction. Let us define the sheet inductances:

Tb,t ≡
µ0λb,t

2
tanh

db,t

2λb,t
; (6a)

Cb,t ≡
µ0λb,t

2
coth

db,t

2λb,t
, (6b)

and observe that for any value of the ratio da/λa, it is Ca ≥

µ0λa/2 ≥ Ta with a = b, t; in the thin-film limit, Ta = µ0da/4
and Ca = µ0λ

2
a/da is the film kinetic [31] sheet inductance

due to the inertial mass of mobile charge carriers (Cooper
pairs). Furthermore6, Ca+Ta = µ0λa coth da/λa, while Ca−

Ta = µ0λa csch da/λa. Then, according to equations (2) and
(4), µ0dm ≡ 2(Tb + Tt) and µ0dj ≡ Tb + Tt + Cb + Ct.

In the case of a Josephson structure made by two films
of the same width, W, Weihnacht [23] provided a general
expression for the phase derivative as the sum of three, in
general, independent terms

80

2π
dφ
dX
= µ0dmHe +

It

W
(Ct + Tb)−

Ib

W
(Cb + Tt). (7)

More precisely, if we introduce the magnetic flux changes,
18j, in the Josephson barrier proportional to the changes
of the Josephson phase [32], 18j = 801φ/2π , each term
in equation (7) represents a magnetic flux per unit length
along the X-direction. Let us assume first that the junction
is unbiased, so that the screening current, Isc, only circulates
in the electrodes to expel any external field, He, from the
interior of the junction; charge conservation requires It(X) =
−Ib(X) = Isc(X). Then:

80

2π
dφ
dX
= µ0dmHe + µ0dj

Is

W
. (8)

By resorting to the definition of inductance as flux per
unit current [33], we can identify LJTL ≡ µ0dj/W as the
inductance per unit length for the screening current [24],
where the subscript JTL stands for Josephson transmission
line. The same expression [33–36] was obtained for a
strip-type superconducting transmission line (STL) consisting
of a dielectric layer sandwiched between two superconductors
of width W; here, the current fed into the top electrode returns
back in the base electrode acting as a ground plane, namely,
Ib(X) = −It(X). In such a way, all fields are identically zero
outside the waveguide (the only difference being that, for
JTLs, the dielectric thickness can be neglected). The screening
current in equation (8) is negative for positive external field,
and vice versa. Since µ0He is the externally applied magnetic
flux density, Be, andµ0Isc/W is the magnetic flux density, Bsc,
induced in the barrier by the current Isc, equation (8) helps
us to understand why we named dm and dj as the junction
magnetic and current thickness, respectively. Likewise µ0dm
and µ0dj can be seen as, respectively, the magnetic and

6 Let us recall the following identities: (a) coth z/2+ tanh z/2 = 2 coth z, (b)
coth z/2−tanh z/2= 2 csch z, (c) coth z/2= coth z+csch z and (d) tanh z/2=
coth z− csch z.

3
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current sheet inductances of the junction. To find the boundary
conditions for equation (5) when the in-line junction is biased
is not an easy task, because it requires the separate knowledge
of the properties of each electrode. All previous analytical
approaches [34, 33, 35] dealt with transmission line structures
in which the current flowing into the top electrode returns
back in the lower electrode acting as a ground plane; in such
cases the inductance per unit length of the transmission line
is the only required parameter. However, for our purposes
we have to find the inductances, Lb and Lt, per unit length
of the bottom and top electrodes, respectively. Resorting to
equation (7), we easily identify them as:

Lb,t ≡
Cb,t + Tt,b

W
, (9)

so that Lb + Lt = LJTL: this is a well known identity in
the theory of two-conductor transmission lines [37, 24, 27].
If both films are thick, Lb ' Lt ' µ0(λb + λt)/2W; in the
opposite case, Lb,t ' µ0λ

2
b,t/Wdb,t, that is when both films

are thin their inductance is essentially of kinetic origin [31].
Classically, the bottom and top inductances have been merged
in their parallel combination [24, 38] so that the role played
by each supercurrent separately was lost; however, to correctly
describe a biased in-line Josephson junction, it is mandatory
to keep the distinction, since each electrode transports its
own supercurrent, and, in general, Ib(X) 6= −It(X). The first
term in equation (9) takes into account the magnetic and
kinetic energy in the film carrying the current, while the
second term is the magnetic energy stored in the opposite
electrode. For a thin-film (symmetric) transmission line the
ratio of the internal magnetic to the kinetic energy goes [27] as
(2d/λ)2/12, i.e., for thin films the kinetic energy dominates.
At this stage, we are still allowed to neglect the magnetic
energy stored in the very thin insulating tunnel barrier. It
is worth stressing that equations (9) are valid as far as the
energy of the magnetic fields outside the transmission line is
negligible.

The case of a superconducting strip of width W carrying
a current I over a superconducting shield was considered long
ago [39]. By resorting to the theorem of images, it was shown
that, if the strip is close to a thick superconducting shield,
the field between them is approximately uniform and equals
H = I/W and, outside the edge of the film, it falls to zero
within a distance of the order of the strip-to-shield distance.
The shield screening current, whose integral is equal to I,
must therefore be uniformly distributed over that portion of
the shield surface covered by the film. On the other side of
the current-carrying strip the field is zero. In the absence of
a shield, it is easy to show that the field on both sides of
a freestanding strip will be equal and opposite and of mean
magnitude H = I/2W. Hence, by bringing a superconducting
plane close to a current-carrying strip, we double the field
between the plane and the strip and reduce it everywhere else.
This effect can be used to reduce the effective inductance
of superconducting elements by depositing them on top of
another insulated superconductor. These considerations allow
the use of equations (9) when a current locally flows either
in the bottom or in the top junction electrode, as occurs in a

symmetrically biased in-line junction. However, if in a given
place Ib(X) and It(X) are comparable and flow in the same
direction, then a considerable magnetic field is induced in the
outer space (unless the films are thin).

2.3. Symmetric biasing

To obtain the local magnetic field, HY(X), we have to divide
equation (7) by µ0dm; in particular, at the boundaries of a
symmetrically biased LJTJ we have

κ
dφ
dX

∣∣∣∣
X=− L

2

≡ HY

(
−

L

2

)
= He −

LbI

µ0dm

= He −
dj

dm

Lb

LJTL

I

W
,

κ
dφ
dX

∣∣∣∣
X= L

2

≡ HY

(
L

2

)
= He +

LtI

µ0dm

= He +
dj

dm

Lt

LJTL

I

W
.

(10)

For Lb = Lt = LJTL/2 (and dj = dm), we recover the
symmetric OS boundary conditions [5] that were generally
adopted thereafter for untrue symmetry reasons. In the early
1980s [2, 19], the reported asymmetric behavior of samples
that were believed to be symmetric led many experimentalists
to abandon the in-line geometry in favor of the overlap one.
Indeed, the last term in equations (10) is the magnetic field
induced in the tunnel barrier by the current I flowing in the
lower or in the upper electrodes.

Ampere’s law applied along the barrier perimeter in
the X–Y plane requires that the magnetic fields at the two
ends of the junctions differ by the amount of the enclosed
current: I = W[HY(L/2)−HY(−L/2)]. It is easy to show that
equations (1a), (3), (5) and (10) fulfil Ampere’s law. From the
boundary conditions (10), it follows that

HY

(
−

L

2

)
+ HY

(
L

2

)
= 2He +

dj

dm

I

W

Lt − Lb

LJTL
.

The last term, vanishing when Lb = Lt, has been omitted in
all previous analysis of LJTJs. The difference, Lt −Lb, in the
self-inductances of the upper and lower junction electrodes is
responsible for the distortion of the experimental curve [2];
it equals µ0[λt csch(dt/λt) − λb csch(db/λLb)] and reduces
to µ0(λt − λb) in the case of thick electrodes. We identify
the dimensionless parameter α ≡ (Lt − Lb)/LJTL as a direct
measure of the asymmetry of the system, with −1 ≤ α ≤ 1.
The asymmetry can be ascribed to differences in the electrode
thicknesses and/or materials, that is, it can have geometrical
and/or electric origins.

We would like to point out that equations (10) are very
general and can be used to correctly describe the so-called
self-field effects occurring in any substantially in-line LJTJ
in which the bias current or a part of the bias current
enters or leaves the junction from one or even both its ends.
Unfortunately, their implementation requires the separate
knowledge of the bottom and top electrode inductances per
unit length (rather than just their sum).

4



Supercond. Sci. Technol. 26 (2013) 055021 R Monaco et al

2.4. Asymmetric biasing

In the case of asymmetric bias, the boundary conditions are

HY

(
−

L

2

)
= He −

dj

dm

Lb + Lt

LJTL

I

W
,

HY

(
L

2

)
= He,

(11)

and, recalling that Lb + Lt = LJTL, we end up with the
boundary conditions first found by Ferrel and Prange [1]
for thick electrode LJTJs. We observe that the difference in
the inductances does not play any role in this case. Many
pioneering experiments [20, 40] were also carried out with
in-line junctions built over a large and thick superconducting
ground plane that causes the current Ib to flow in the lower
skin layer of the bottom electrode (provided it is a thick film)
and is shielded by the upper part. When this is the case, Lb
must be set to zero in equations (10) or (11), so that the biasing
configuration becomes irrelevant. For the above reasons, in the
rest of this paper we will only consider the more interesting
case of the symmetrically biased in-line junction with no
ground plane.

2.5. Normalized units

In normalized units of x ≡ X/λJ, the differential equation (5)
becomes:

φxx = sinφ(x), (12)

with x ∈ [−`/2, `/2]. Normalizing the currents to I0 ≡ JcWλJ
and the magnetic fields to Hc/2 ≡ JcλJdj/dm, the boundary
conditions (10) for a symmetrically biased LJTJ read

φx

(
−
`

2

)
≡ hl = he −

Lb i

LJTL
;

φx

(
`

2

)
≡ hr = he +

Lt i

LJTL
.

(13)

With these notations, the normalized critical magnetic field hc
of a short Josephson junction is 2π/`.

2.5.1. Magnetic diffraction pattern. Setting hl and hr at
their extreme values ±2 in equations (13), we obtain the
normalized MDP, ic(he), in the Meissner regime

ic(he) =


2+ he

Lb/LJTL
for − 2 ≤ he ≤ hmax

2− he

Lt/LJTL
for hmax ≤ he ≤ 2,

(14)

with hmax = 2α being the field value which yields the
maximum critical current ic(hmax) = 4. The second-last
equality turns out to be very useful in the experiments to
determine the asymmetry parameter from the analysis of the
junction MDP:

α =
hmax

2
=

Hmax

Hc
. (15)

Figure 2. Theoretical magnetic diffraction patterns Ic(He) of a very
long in-line symmetrically current-biased Josephson junction in the
Meissner regime for different values of the asymmetry parameter
α. The critical current, Ic, is normalized to I0 = JcWλJ and the ex-
ternally applied magnetic field, He, to the critical magnetic field Hc.

Figure 2 shows the theoretical Ic(He) for a very long in-line
Josephson junction in the Meissner regime and for different
values of α; the junction critical current, Ic, is normalized to
I0 and the critical magnetic field, Hc, is the theoretical field
value that fully suppresses the critical current. We remark
that the patterns are antisymmetric, Ic(−He) = −Ic(He)

and piecewise linear. They have different absolute slopes
|dIc/dHe| on the left and right branches, respectively, equal
to µ0dm/Lb and µ0dm/Lt.

2.5.2. Current diffraction pattern. Let us consider now
the case when the junction critical current is modulated by
the transverse field induced by a stationary current entirely
flowing in either the top or bottom electrode. This so-called
control current technique has been used to produce local
magnetic fields for digital applications of Josephson circuits
since 1969 [40]. If the control current, Î, is injected into,
say, the top electrode, then the magnetic field at the inner
surfaces is Ĥt = Lt Î/µ0dm, as in equation (10). The value
of the control current for which the junction critical current
Ic vanishes is Îc = 80/πλJ Lt and will be named the critical
control current. Likewise, Îmax will be that value of Î which
maximizes the critical current, Ic. In normalized units, ĥt ≡

2Ĥt/Hc = Lt ι̂/LJTL, where ι̂ ≡ Î/I0. Replacing he with ĥt,
equations (14) become

ic(ι̂) =


Lt

Lb
(ι̂c + ι̂) for − ι̂c ≤ ι̂ ≤ ι̂max

ι̂c − ι̂ for ι̂max ≤ ι̂ ≤ ι̂c,

(16)

where ι̂c ≡ Îc/I0 = 2LJTL/Lt and ι̂max ≡ Îmax/I0 = ι̂c(Lb −

Lt)/LJTL. It is worth mentioning that

Îmax

Îc
=

Hmax

Hc
(17)

indicating that the degree of asymmetry is the same for the
magnetic and the current diffraction pattern (CDP). In other

5
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words, as far as the modulation of the critical current concerns,
a control current is equivalent to an externally applied field.
It is then possible to identify the CDP slope with a current
gain [14, 41] g ≡ dIc/dÎ = dic/dι̂. From equation (17), it
follows that

g =


Lt

Lb
for − ι̂c ≤ ι̂ ≤ ι̂max

−1 for ι̂max ≤ ι̂ ≤ ι̂c.

(18)

With Lt > Lb, then ι̂max is negative and so, in zero external
field, we have a unitary current gain. However, large current
gains can be achieved with samples having a large Lt/Lb
ratio by control current biasing the upper electrode to have
Î < Îmax.

3. Window-type junctions

Weihnacht’s equation (7) was derived considering that the
thickness of the tunnel barrier is much smaller that typical
penetration depths so that the magnetic field in between
the electrodes is in the Y-direction, is uniform along Z,
and only depends on the X coordinate. Accordingly, there
are no fringing effects and, at the same time, the magnetic
energy stored in the dielectric layer can be neglected. In
addition, it was assumed that the base and top electrode
match the width of the barrier, Wb = Wt = W. However, these
conditions are not fulfilled in present day window-type planar
tunnel junctions, whose electrodes have quite different widths;
typically, Wb > Wt > W, that is, two strips, of total width
Wi = Wt − W, exist along the junction sides where the top
electrode overhangs the base electrode, but no tunneling is
possible due to the thick insulating layer. In the case Wt >

Wb, then Wi = Wb − W; however, throughout this paper
we will assume that the base electrode is wider or at most
matches the top electrode. The so-called idle region is formed
after the patterning of the wiring film which provides the
electrical connection to the junction top electrode. In this
region surrounding the tunnel area the insulation between
the bottom and top electrode is provided by an oxide layer,
typically made of a native anodic oxide of the base electrode
and/or a deposited SiOx layer. The total thickness of this
passive layer, dox, is comparable to or even larger than
the electrode penetration depths, λb,t, and might also be
comparable to the junction width, W. Then the screening
currents in the upper and lower electrodes distribute over
an effective width larger than the junction width. This leads
to a new smaller junction inductance per unit length L′JTL
corresponding to the so-called [6–8] inflation of the Josephson
penetration depth occurring in window-type Josephson tunnel
junctions. In [6, 7], each electrode was modeled as a parallel
combination of two stripes having quite different oxide
thicknesses, resulting in a rather involved expression of the
effective current thickness. From a phenomenological point
of view, a unidimensional junction with a lateral idle region
behaves as a bare junction having the same width, W, and
length, L, but with an effective current thickness, d′j, given
by a proper combination of the current thicknesses of the
naked junction, dj, and of the idle region, di, namely: d′j =

dj/[1 + (dj/di)(Wi/Wj)] < dj, so that L′JTL ≡ µ0d′j/W and

λ′J ≡
√
80/2πµ0d′jJc > λJ. The prime symbol (′) labels

the parameters relative to the window junction. Taking into
account the thickness, dw, of the wiring layer, it is:

dj = λb coth
db

λb
+ λt coth

(dt + dw)

λt
,

di = λb coth
db

λb
+ λt coth

dw

λt
+ dox.

Outside the junction area the idle region takes the form
of a microstrip-line made from two electrodes of finite
width and thickness. Chang [35] considered the case of
a superconducting strip transmission line, i.e., a structure
consisting of a finite-width superconducting film of thickness
h over an infinite (and thick) superconducting ground plane.
When the strip linewidth, w, slightly exceeds the insulation
thickness, t, the inductance per unit length, LSTL, was
analytically derived as

LSTL =
µ0dj

w
K−1

(w

h
,

t

h

)
,

with the fringing-field functional K, first introduced in [39],
being always larger than unity; the fringing fields have the
effect of increasing the system energy, i.e., reducing the
inductances per unit length. K decreases with the ratio w/h
and increases with t/h. Definitely, Chang’s results can be used
when Wb � Wt, but, unfortunately, no analytical expression
is available for a STL when both electrodes have finite and
comparable widths.

The situation is more complicated if Ib(X) 6= −It(X).
Therefore, we resort again to equation (7) to determine the
flux per unit length just outside the tunneling area

80

2π
dφ
dX
= µ0d′mHe + L′tIt − L′bIb. (19)

In other words, for a window-type LJTJ the left (right)
boundary condition is determined by the property of the
longitudinal idle region to the left (right) of the left (right)
junction end. The longitudinal idle region also acts on the
junction as a capacitive load, which does not play any role
as far as the static properties are concerned. We propose that,
provided Wb slightly exceeds Wt, the inductances per unit
length of the bottom and top electrodes at the extremities of a
symmetrically biased in-line junction (where the bias current,
I, at the junction extremities either flows in the bottom or in
the top electrode) are

L′t ≈
Ct + Tb + µ0dox

KtWt
, (20a)

L′b ≈
Cb + Tt + µ0dox

KbWb
, (20b)

where Kb,t are fringing-field factors that remain to be
determined: with Wb ≥ Wt we expect Kb ≥ Kt ≈ 1.
Equations (20a) and (20b) rely on the fact that a current It (Ib)

flowing in the top (bottom) electrode induces a magnetic
field It/Wt (Ib/Wb) between the electrodes. The last terms in
each of the previous equations take into account the magnetic
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Figure 3. (a) Electrode configuration of a 100 µm long and 1.2 µm wide, window-type Josephson tunnel junction having quite different
electrode widths: Wt = 4 µm and Wb = 30 µm; (b) its experimental magnetic diffraction patterns, Ic(He), when symmetrically biased:
Ic,max = 1.10 mA,Hc1 = ±580 A m−1 and Hc2 = ±830 A m−1.

energy stored in the thick oxide layer. In equation (19) we
also have considered that the magnetic thickness outside the
tunneling area is d′m = dm + dox (but this is a secondary field
focusing effect [27, 42]). Consequently, for any window-type
Josephson tunnel junction the critical field is lower than that
of a naked one; for a window-type LJTJ it is

H′c = 80/πµ0d′mλ
′

J < Hc. (21)

Ultimately, the boundary conditions equations (10) still hold,
if we replace dm, dj, Lb,t and LJTL for the naked junction
with their respective counterparts, d′m, d′j, L′b,t and L′JTL,
for the window junction. It should be clear that, this time,
the inductance per unit length, L′STL, of the superconducting
(non-Josephson) transmission line outside the Josephson area
is not given by the sum L′b + L′t, otherwise the magnetic
energy stored in the dielectric layer would be counted twice.
Naturally, in general, L′b + L′t does not even match L′JTL. For
the samples fabricated by means of a tri-layer process, the
top electrode to be considered in equations (20a) and (20b) is
the wiring layer, which does not necessarily cover the whole
barrier area, so that it could also be Wt < W.

Indeed, the in-line approximation fails if Wb or Wt are
much larger than W, because part of the bias current enters
the tunnel barrier also along the long junction dimension, L,
and a mixed in-line-overlap model [43, 44] should be adopted
in which the Josephson phase φ obeys the time-independent
perturbed sine-Gordon equation

sinφ(X) = λ2
J

d2φ(X)

dX2 +
Iov(X)

JcW
.

Iov(X) is the distribution of the externally applied bias
current, Iov =

∫ L/2
−L/2 Iov(X) dX, giving the fraction of the

bias current I that enters the junction through the long
dimension (overlap component). Nevertheless, the junction
configuration is still substantially in-line and, as such, the
boundary conditions discussed so far still apply with the only
caveat that the in-line component of the bias current is I− Iov.
The consequences resulting from the asymmetric boundary
conditions imposed by a non-uniform external magnetic field
at the extremities of both short and long Josephson junctions

have been recently investigated [45, 46]; the field asymmetry
is responsible for a degeneracy of the critical field, Hc, that
was numerically demonstrated and experimentally verified.
To better understand this point, we sketch in figure 3(a) the
geometry of a 100 µm long and 1.2 µm wide, symmetrically
biased window-type Nb–AlN–NbN junction with Wt = 4 µm
and Wb = 30 µm. Figure 3(b) shows the MDP in which
the two critical fields, Hc1 and Hc2, are quite evident. Since,
in real measurements, Ic never vanishes before the next
lobe grows up, the critical field values are obtained by
extrapolating to zero the linear branches of the principal
lobes; this is indicated by the gray dashed lines in this
and in the forthcoming plots. A similar pattern asymmetry
was first reported in [4] and was erroneously ascribed to a
low uniformity of the barrier properties. However, this is an
extreme case in which the asymmetry is mainly due to the very
different widths of the electrodes. The experimental findings
that will be presented in the next section refer to window
junctions having Wb ≥ 1.5Wt, for which the degeneracy of
the critical fields, although observable, is small enough to
be ignored.

3.1. Normalized units

The boundary conditions for a window junction are obtained
by dividing equation (19) by µ0d′m. In normalized units of
x′ ≡ X/λ′J, with x′ ∈ [−`′/2, `′/2] where `′ ≡ L/λ′J is the
normalized length of the window junction; normalizing the
currents to I′0 ≡ JcWλ′J and the magnetic fields to H′c/2 =
Jcλ
′

Jd
′

i/d
′
m, equations (13) become

φx′

(
−
`′

2

)
≡ h′l = h′e −3

′

bi;

φx′

(
`′

2

)
≡ h′r = h′e +3

′
ti,

(22)

where we have introduced the reduced inductances 3′b,t ≡
L′b,t/L′JTL and, in general, 3′b + 3

′
t 6= 1. Setting h′l and h′r

at their extreme values ±2 in equations (22), we obtain the
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MDP i′c(h
′
e) in the Meissner regime lobe

i′c(h
′
e) =


2+ h′e
3′b

for − 2 ≤ h′e ≤ h′max

2− h′e
3′t

for h′max ≤ h′e ≤ 2,
(23)

with h′max ≡ 2(L′b − L′t)/(L′b + L′t) being the normalized
field value yielding the maximum critical current i′c(h

′
max) =

4/(3′b + 3
′
t) = 4L′JTL/(L′b + L′t). Still we can define the

asymmetry parameter

α′ ≡
L′t − L′b

L′JTL
=

H′max

H′c
(24)

and express the ratio of the inductances per unit length as

L′t
L′b
=

1− α′

1+ α′
; (25)

when α′ is positive then L′t < L′b and vice versa. If the
modulating magnetic field is the transverse field induced
by a control current, Î, flowing in the top electrode, then
Ĥ′t = L′t Î/µ0d′m = d′j3

′
t Î/d
′
mW. In normalized units, ĥ′t ≡

2Ĥ′t/H′c =3
′
t ι̂
′, where ι̂′ ≡ Î/I′0 is the reduced control current.

Replacing h′e with 3′t ι̂
′ in equation (23), we get the CDP of a

window-type junction

i′c(ι̂
′) =


2+3′t ι̂

′

3′b
for − ι̂′c ≤ ι̂

′
≤ ι̂′max

2−3′t ι̂
′

3′t
for ι̂′max ≤ ι̂

′
≤ ι̂′c,

(26)

where ι̂′c ≡ 2/3′t and ι̂′max ≡ h′max/3
′
t = 2(3′b/3

′
t−1)/(3′b+

3′t). The current gain, g′ ≡ di′c/dι̂
′, for an in-line window-type

junction is

g′ =


3′t

3′b
=

L′t
L′b

for − ι̂′c ≤ ι̂
′
≤ ι̂′max

−1 for ι̂′max ≤ ι̂
′
≤ ι̂′c.

(27)

Since most real samples have Wb > Wt, in the case of
electrodes having the same penetration depth, then L′t > L′b,
suggesting that, for applications it is preferable to inject the
control current into the top electrode which, typically, with
respect to the bottom electrode, has a smaller width and so
a larger inductance per unit length. Furthermore, L′t can be
increased by simply reducing the wiring width at the junction
extremities. This can be an advantage for some applications.

4. Experiments

The findings of section 3.1 can be experimentally verified
by measuring the magnetic and current diffraction patterns
of symmetrically biased in-line window-type LJTJs. In
particular, equations (24) and (25) allow the determination
of the ratio of the inductances per unit length, which can be
compared with the expected value from equations (20a) and
(20b):

L′t
L′b
= σ

Wb

Wt

Ct + Tb + µ0dox

Cb + Tt + µ0dox
(28)

where σ ≡ Kb/Kt is a factor taking into account the film
asymmetry [36] and is equal to 1 when the electrodes have
the same geometrical and electrical parameters. We will test
the validity of equation (28) for samples having Wb = Wt and
Wb = 1.5Wt.

4.1. The samples and the experimental setup

In order to have a solid benchmark of data, we have compared
the static properties of thin-film Nb–Nb and Nb–NbN samples
having the same geometrical configuration. The NbN films
used in this study were deposited by dc magnetron sputtering
of a pure Nb target in an argon and nitrogen sputtering
gas. Although the samples were not heated intentionally,
the substrate temperature rose slightly during deposition;
nevertheless the surface temperature never exceeded 120 ◦C,
allowing a lift-off process. The superconducting transition
temperature (determined as the resistivity midpoint by a
four-point method) for samples deposited under optimal
conditions is 15.5 K. Polycrystalline niobium nitride has a
dirty-limit penetration depth [47, 48], λNbN(T = 4.2 K) =
370 nm, several times larger than that of epitaxially grown
niobium, λNb(T = 4.2 K) = 90 nm.

All samples were long window-type in-line junctions
having physical length L = 100 µm and width W = 1.2 µm
with a 1.4 µm wide idle region on each side, so that Wi =

2.8 µm. They were fabricated with the same parameters for
the deposition and anodization of the base electrodes, as well
as for the deposition of the passive layer: db = 190 ± 10 nm
and dox = 220±10 nm. Further, the top and wiring layers had
quite similar thicknesses: dt,Nb = dt,NbN = 65±5 nm, dw,Nb =

470 ± 10 nm and dw,NbN = 390 ± 10 nm. Therefore, the
material used for the top (and wiring) electrode was the only
notable difference. More importantly the wiring layers were
thick for the Nb–Nb samples, dw,Nb ≈ 6λNb, and thin for the
Nb–NbN ones, dw,NbN ≈ λNbN, in which case the inductance
is predominantly kinetic. We also note that the thickness,
dox, of the passive layer is comparable to the electrode
thicknesses. Table 1 reports the relevant electric parameters
(at 4.2 K) for the Nb/Alox/Nb and Nb/AlN/NbN Josephson
tunnel junctions used for this work. For all samples it was
L� λ′j > W. All measurements were carried out at 4.2 K.

Our setup consisted of a cryoprobe inserted vertically in
a commercial LHe dewar. The cryoprobe was magnetically
shielded by means of two concentric Pb cans and a vacuum
tight cryoperm can surrounding them and immersed in
the LHe bath (T ' 4.2 K). In addition, the measurements
were carried out in an rf-shielded environment. A calibrated
magnetic field, He, was applied in the direction parallel to
the chip surface and perpendicular to the junction’s long
dimension (Y-axis) by means of a superconducting cylindrical
coil aligned with an accuracy, 1θ , of definitely better than a
few sexagesimal degrees.

4.2. Magnetic diffraction patterns

The upper panel of figure 4 shows the geometry of an in-line
junction realized by equal width electrodes, Wb =Wt = 7µm.
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Figure 4. Experimental magnetic diffraction patterns, Ic(He), for two symmetrically biased in-line long Josephson tunnel junctions having
equal width electrodes (Wb = Wt = 7 µm), but made of different materials: (a) electrode configuration; (b) Nb–Nb sample:
Ic,max = 2.28 mA,Hmax = 50 A m−1 and Hc = ±710 A m−1 and (c) Nb–NbN sample: Ic,max = 1.08 mA,Hmax = −465 A m−1 and
Hc = ±870 A m−1.

Table 1. Relevant electric parameters (at 4.2 K) for the Nb/Alox/Nb and Nb/AlN/NbN Josephson tunnel junctions. The values are
approximated to two significant digits and the prime symbol (′) denotes the parameters relative to the window junctions. All samples have
the same length, L = 100 µm, width, W = 1.2 µm, and idle region width, Wi = 2.8 µm.

Sample
Jc
(kA cm−2)

di
(nm)

dm
(nm)

dj
(nm)

λJ
(µm)

Hc
(A m−1)

d′m
(nm)

d′j
(nm)

λ′J
(µm)

H′c
(A m−1)

Nb–Nb 11 400 160 180 3.7 890 380 89 5.3 260
Nb–NbN 3.6 780 270 530 3.6 520 470 210 5.9 190

The electrodes are vertically shifted, but they preserve the
symmetry with respect to the junction axis. In figure 4(b)
we report the MDP of such a junction when fabricated with
the all-Nb technology. The small positive asymmetry, α′ =
H′max/H

′
c ≈ 7%, can be fully ascribed to the difference in

the electrode thicknesses, dw ' 2.5 db, and implies that L′t is
slightly smaller than L′b. From equations (28) with σ = 1, we
have L′t/L′b = 0.90, in quite good agreement with the value
of about 0.88 obtained from equation (25). Figure 4(c) is the
counterpart of figure 4(b) for a Nb–NbN junction having the
same geometry. Now the asymmetry parameter, α′ ≈ −0.53,
is negative, indicating that L′t > L′b. The factor σ in equation
(28) must be set to 1.9 to reproduce the measured ratio
L′t/L′b = 3.3.

Figures 5(b) and (c) compare the MDPs of two
symmetrically biased junctions having the geometrical
configuration, depicted in figure 5(a) (Wb = 1.5Wt = 6 µm),
but made from different materials, respectively, Nb–Nb and
Nb–NbN. We now have asymmetries of α′ ≈ −30% and
−89%, respectively. For the former sample the asymmetry

is mainly ascribed to the difference in the electrode widths,
while for the latter it is further enhanced by the large
penetration depth of the upper (NbN) electrode. To reproduce
these values, we had to set σ in equations (28) to 1.4 and
3.3, respectively. From equations (25) we have L′t,NbN ≈

4.6L′t,Nb ≈ 8.5L′b.

4.3. Current diffraction patterns

Figure 6(a) shows the CDP of the same Nb–NbN sample
of figure 5(c) when the control current flows in the top
(wiring) electrode and in the absence of an externally applied
field. Comparing it to the MDP in figure 5(c), we observe
a similar qualitative behavior and, as expected according to
equation (17), the measured asymmetry parameters are the
same within the experimental uncertainty of a few per cent.
Furthermore, the current gains, g′, measured by the slopes
of the left and right branches of the Meissner lobe are in
agreement with the expectation of equation (27).
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Figure 5. Experimental magnetic diffraction patterns, Ic(He), for two symmetrically biased in-line long Josephson tunnel junctions having
the same geometrical configuration (Wt = 4 µm and Wb = 6 µm), but made of different materials: (a) electrode configuration; (b) Nb–Nb;
Ic,max = 2.23 mA,Hmax = −175 A m−1 and Hc = ±585 A m−1 and (c) Nb–NbN; Ic,max = 1.03 mA,Hmax = −545 A m−1 and
Hc = ±680 A m−1.

Figure 6. Experimental current diffraction patterns for the same sample of figure 5(c). The control current Î is injected: (a) into the top
electrode: Ic,max = 1.03 mA, Îmax = −0.46 mA and Îc = ±0.56 mA, (b) into the base electrode: Ic,max = 1.03 mA, Îmax = −3.4 mA and
Îc = ±4.6 mA. g′ is the current gain given in equations (27) or (29).

If the control current is fed to the bottom, rather than
the top electrode, the normalized inductance per unit length
of the junction bottom electrode, 3′b, must replace 3′t in the
numerator of the fractions in equation (26), so that

g′ =


1 for − ι̂′c ≤ ι̂

′
≤ ι̂′max

−
L′b

L′t
for ι̂′max ≤ ι̂

′
≤ ι̂′c

(29)

where now ι̂′c ≡ 2/3′b and ι̂′max = 2(3′t/3
′

b − 1)/(3′b +3
′
t).

Figure 6(b) is the CDP of the same sample when the control
current is injected into the base electrode. The asymmetry

parameter is still unchanged and the pattern slopes agree with
equation (29). Other results in agreement with the theory (and
not reported here) were obtained for the Nb–Nb sample of
figure 5(a). The wide range of linearity of the CDPs is very
attractive for the realization of cryogenic current amplifiers
with a large dynamic range, especially because large slopes
can be achieved in the [−ι̂c, ι̂max] interval. The asymmetry
in the electrode inductance can help to significantly improve
the gain of a current amplifier over a device with symmetric
inductances. The most practical way to achieve this is to
inject the signal current in the electrode having the largest
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Figure 7. Schematic view of a long Josephson tunnel junction
having a ring-shaped top electrode (in gray); the base electrode is in
black and the tunnel area is white.

inductance per unit length. In practice, the top one is chosen,
which can be made thin, narrow and of a material with a large
penetration depth, such as polycrystalline NbN; possibly, on
the contrary, the base electrode could be thick, moderately
wider and made of a material having a low penetration depth,
such as epitaxial Nb.

4.4. Comments

As a general qualitative comment to the experimental patterns
reported so far, it is worth mentioning that the measured
critical magnetic fields, H′c, reported in the figure captions,
are systematically higher than those in table 1 expected
from equation (21) (2–3 times for the Nb–Nb samples and
3–5 times for the Nb–NbN ones). One might conclude that
the expression for H′c is wrong or that the parameters used
for the calculation are unreasonable. Nevertheless, when
comparing the measured and expected values, 80/πL′t,bλ

′

J =

µ0H′cd′m/L′t,b, of the critical control currents, we found a
quantitative agreement within the experimental uncertainties.
In fact, setting Kt = 1 in equation (20a) and Kb = σ =

3.3 in equation (20b), we expect the top and bottom
critical control currents to be 0.55 and 4.7 mA, respectively;
these values have to be compared with those found in
the experiments and stated in the caption of figure 6. We
believe that the expression for the critical magnetic field is
correct, but, due to demagnetization effects, the externally
applied magnetic field, He, is partially screened by the
electrodes [30]. Of course, the current-induced magnetic
fields do not suffer from such screening. Therefore, a
systematic investigation of magnetic and current diffraction
patterns of symmetrically biased in-line LJTJs could be useful
to understand the demagnetization effects in superconducting
thin-film structures in the presence of an in-plane external
magnetic field. We observe that the inductance ratio (and so
the asymmetry parameter) can also be extracted from the ratio
of the top and bottom critical control currents.

Due to the specular symmetry and the large aspect ratio of
our samples, as expected [49], the measured critical currents
were virtually insensitive to any component of the applied
field off the Y-axis. It means that the effective magnetic field
was He cos1θ ; even with a coil misalignment 1θ ' 5◦, the

Figure 8. Experimental flux diffraction patterns, Ic(8e). The
shielding currents induced by the external flux circulate in the top
electrode: Ic,max = 2.25 mA and 8c = ±70080.

relative error on the field strength measurement is less than
1%.

4.5. Flux diffraction patterns

In a superconducting loop immersed in a magnetic field a
current, Î, circulates to expel the field from the loop hole.
Denoting with8e the magnetic flux through the hole and with
L the loop geometric (temperature-independent) inductance,
then Î = 8e/L. When the loop thickness, d, or width, w, are
comparable to the penetration depth then the magnetic flux
has to be replaced by the London fluxoid [50] and, at the
same time, the kinetic inductance [51], µ0λ

2/wd, must be
added to the geometric inductance. The circulating current
can be detected if, as shown in figure 7, a portion of the loop
also acts as the electrode of an in-line LJTJ for which Î is
seen as a control current capable of modulating its critical
current. This mechanism has been recently proposed and
demonstrated with the aim to realize magnetic sensors based
on LJTJs [11]. Apart from their potential applications, the
interest in LJTJs built on a superconducting loop stems from
the fact that they were also successfully used to detect trapped
flux quanta in a cosmological experiment aimed to study the
spontaneous defect production during the fast quenching of a
superconducting loop through its normal to superconducting
transition temperature [52]. Figure 8 shows the dependence
of the junction critical current, Ic, on the external flux 8e,
through a Nb ring of inner radius 200 µm, width 4 µm
and thickness 470 nm. The magnetic flux was applied by
means of a calibrated multi-turn coil placed underneath the
chip holder, whose axis was perpendicular to the loop plane.
The pattern asymmetry is very small (α < 1%), indicating
that the boundary conditions at the junction extremities are
pretty much the same; this is made possible by the splitting
of the bias currents in the two arms of the loop. The static
properties of LJTJs with doubly connected electrodes have
been recently investigated [30]. Since the junction critical
field only depends on the barrier parameters and not on the
electrode configuration, in keeping with our previous findings,
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it is easy to derive that the critical magnetic flux, 8c, is
proportional to the loop inductance, L, and

L = πλ′J L′t
8c

80
; (30)

clearly, it is assumed that the presence of the tunnel
junction does not significantly change the inductance of
the loop. Equation (30) can be exploited to determine the
loop inductance in all those cases where the loop has
an irregular geometry or is affected by the presence of
other superconducting elements. We have successfully tested
equation (30) for several circular and rectangular loops with
different dimensions. In all cases a small portion of the loops
constituted the top electrode of a LJTJ whose base electrode
was made by a larger Nb film. As expected, no significant
difference was found between the inductance values obtained
for Nb and NbN loops. This made us confident of the
reliability of the whole experimental procedure and with the
values chosen for the bulk magnetic penetrations of these two
materials.

5. Conclusions

We have addressed the issue of the self-field effects in long
Josephson tunnel junctions which were traditionally used
to investigate the physics of non-linear phenomena [26].
In all previous works on LJTJs it was implicitly assumed
that the junction electrodes had the same inductance per
unit length. Following Weihnacht we have generalized the
conditions at the junction boundaries for those more realistic
cases in which the electrode widths are the same, but their
thicknesses and materials are unlike. This case requires the
separate knowledge of Lb and Lt, the inductances per unit
length of, respectively, the base and top electrode, related
to the magnetic energy stored within a London penetration
distance of the film inner surfaces. One interesting feature
is that the inductance ratio is directly related to the so-far
unexplained asymmetry in the magnetic diffraction pattern of
symmetrically biased in-line junctions. Later on the modeling
was extended to the more common situation in which the
electrode widths can also be different, and useful expressions
for Lb and Lt have been proposed, as far as the film widths
are not much wider than the tunnel barrier. Our approach
includes junctions with a mixed in-line and overlap bias
configuration and also applies when there is a local mismatch
between the bias and Josephson current densities, as occurs
in flux flow oscillators [53]. We would like to stress that our
analysis on windows-type junctions is restricted to the cases
when the film widths are larger than, but comparable to, the
junction width. We have reported an extensive experimental
study of the static properties of long in-line junctions having
different materials and various geometrical configurations.
One more interesting feature was that the junction critical
current is equally modulated by an external magnetic field
or a control current injected into any of the electrodes. The
same behavior is reproduced in the presence of a magnetic flux
linked to a doubly connected electrode. We have shown that
our experimental data are compatible with equations (20a)

and (20b), which have to be taken into consideration in the
assessment of the self-field effects in Josephson devices.
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