

Сверхпроводниковые интегральные приемники терагерцового диапазона

В.П. Кошелец, П.Н. Дмитриев, А.Б. Ермаков, К.В. Калашников, О.С. Киселев, Н.В. Кинев, А.А. Мухортова, Ю.С. Токпанов, М.Ю. Торгашин, Л.В. Филиппенко

Институт радиотехники и электроники им. В.А. Котельникова РАН (Москва)

Сверхпроводниковые интегральные приемники терагерцового диапазона

- Сверхпроводниковый интегральный приемник (СИП)
- Сверхпроводниковый генератор гетеродина для СИП
- Проект TErahertz LImb Sounder (TELIS)
- Результаты проекта **TELIS**
- Другие применения СИП
- Заключение

Сверхпроводниковый интегральный приемник (СИП)

Nb–AlOx–Nb или Nb-AlN-NbN

Плотность критического тока: $Jc = 3 - 8 \text{ кA/cm}^2$;

Толщина туннельного барьера : ~ 1 nm;

Площадь СИС перехода: ~ 1 µm²

Центральная часть микросхемы интегрального приемника

Nb-AlOx-Nb; Nb-AlN-NbN; $Jc = 5 - 8 \text{ kA/cm}^2$ Optionally: SIS – $Jc = 8 \text{ kA/cm}^2$; FFO + HM = 4 kA/cm²

Сверхпроводниковый генератор гетеродина

Спектр Nb-AIN-NbN СГГ в режиме ФАПЧ (частота 605 ГГц; LW = 1.7 МГц; SR = 92 %)

НКПС-1

06 декабря 2011

Зависимость ширины линии излучения СГГ и спектрального качества в режиме ФАПЧ от частоты

TELIS (Terahertz Limb Sounder)

TELIS

Измерение спектров CIO, BrO, O_3 , HCI, HOCI, etc;

- физика и химия атмосферы;
 разрушение озонового слоя;
 транспорт тепла; климат
- Апробация новых технологий приемников ТГц диапазона
- Поверка оборудования для
 новых космических проектов;
 уточнение спутниковых данных
 - Три сверхпроводниковых гетеродинных приемника:
 - 500 GHz by RAL
 - 450-650 GHz by SRON-IREE
 - 1.8 THz by DLR (PI)

Основные параметры спектрометра

Входной диапазон частот	450 — 700 ГГц	
Шумовая температура	120 K	
Диапазон ПЧ	4-8 ГГц	
Шаг гетеродина по частоте	< 300 МГц	
Спектральное разрешение	< 1 МГц	
Выделяемая мощность	< 30 мВт	
Рабочая температура	< 4.5 K	

для двух дизайнов микросхемы СИП

измеренная на частоте 497 ГГц

Стабильность интегрального Спектрометра

Стабильность СИСП (Allan Variance), СГГ синхронизирован системой ФАПЧ на частоте 600 ГГц. Красная и зеленые кривые показывают стабильность индивидуальных каналов, синяя – спектроскопическую стабильность

Диаграмма направленности СИП для ТЕЛИС

-80.00

-72.00 -64.00 -56.00 -48.00 -40.00

-32.00

-24.00

-16.00 -8.000

Амплитуда

Фаза

СИП для TELIS – дистанционное управление

TELIS (Terahertz Limb Sounder)

Международный проект по разработке трехканального аэростатного спектрометра наклонного зондирования

Три запуска аэростата TELIS-MIPAS на полигоне Esrange, Швеция; Март 2009 г., Январь 2010, Март 2011 г. Объем аэростата: 400 000 м3; вес полезной нагрузки: 1 200 кг

Таблица частот и измеряемых веществ, выбранных для проекта TELIS

##	Частота СГГ,	Измеряемые вещества
	ГГц	(High priority)
1	495.04	H ₂ ¹⁸ O
2	496.88	HDO
3	505.6	BrO (∆T = 0.3 K !!)
4	507.28	CIO
5	515.25	O ₂ /pointing /pressure
6	519.25	BrO (∆T = 0.3 K !!)
7	607.78	O ₃ isotopes
8	619.1	HCI (HOCI, CIO)

Спектры, измеренные при сканировании телескопа

Спектры, показывающие рост концентрации CIO и BrO после восхода солнца (f CГГ = 495 ГГц и 519,3 ГГц).

BrO

CIO diurnal cycle

06 декабря 2011

НКПС-1

СИП для медицинской диагностики

Основные достоинства СИП для медицины

 Низкий (квантовый) уровень собственных шумов спектрометра
 возможность детектирования сверхмалых концентраций
 веществ – маркеров => диагностика заболеваний на ранних стадиях;

- Однозначность идентификации веществ - маркеров благодаря высокому спектральному разрешению (< 1 МГц);
- Широкая рабочая полоса частот

 регистрация большого числа
 соединений маркеров одним
 прибором.

Фото лабораторной установки для спектрального анализа выдыхаемого воздуха

Пассивная система построения терагерцового изображения

- One pixel receiver with mechanical scanning (NETD ~ 13 mK; Spatial resolution ~ 2 mm)
- Next step: linear array of SIRs

Спектры излучения из BSCCO mesa, измеренные СИП

Huabing Wang *Tsukuba, Japan Nanjing, China*

Linewidth: down to 25 MHz Frequency range at 4.2 K: 584 ~ 736 GHz

Заключение

- Разработана и реализована концепция сверхпроводникового интегрального спектрометра (СИСП) субмм диапазона длин волн для мониторинга атмосферы и медицинской диагностики;
- Оптимизирована конструкция и топология СГГ; в диапазоне 300 700 ГГц реализована непрерывная перестройка частоты ССГ, в режиме фазовой автоподстройки частоты (ФАПЧ) получено спектральное качество более 70%.
- На полигоне «Esrange» (Швеция) проведены успешные запуски сверхпроводникового спектрометра на высотном аэростате. Реализован частотный диапазон 450 – 700 ГГц, шумовая температура 120 К, полоса ПЧ 4 –8 ГГц, спектральное разрешение лучше 1 МГц. Были измерены спектры различных газовых составляющих, в том числе CIO и BrO, ответственных за разрушение озонового слоя Земли.
- На базе бортового интегрального спектрометра разработана лабораторная система для спектрального анализа газовой смеси (неинвазивная медицинская диагностика, определение изотопного состава газов) и приема излучения из новых типов сверхпроводниковых генераторов. Начата разработка систем безопасности на основе СИСП.