

Superconducting Integrated THz Receivers: Development and Applications

Valery Koshelets, Andrey Ermakov, Lyudmila Filippenko, Nickolay Kinev, Oleg Kiselev, Mikhail Torgashin, *Kotel'nikov Institute of Radio Engineering and Electronics, Moscow, Russia*

Arno de Lange, Gert de Lange

SRON Netherlands Institute for Space Research, the Netherlands

Sergey I. Pripolzin, and Vladimir L. Vaks

Institute for Physics of Microstructure, Nizhny Novgorod; Russia

Superconducting Integrated THz Receivers: Development and Applications

Outline

- Superconducting Integrated Receiver (SIR)
- Flux Flow Oscillator (FFO) for the SIR
- TErahertz Llmb Sounder (TELIS) project
- Results of the TELIS flights
- Future SIR applications
- Conclusion

Superconducting Integrated Receiver (SIR) with phase-locked FFO

Centennial Superconductivity Conference 2011

Internal part of the SIR Microcircuit

Nb-AlOx-Nb, Nb-AlN-NbN; $Jc = 5 - 10 \text{ kA/cm}^2$ Optionally: SIS – $Jc = 8 \text{ kA/cm}^2$; FFO + HM = 4 kA/cm²

2011, September 22

Centennial Superconductivity Conference 2011

Nb-AIOx-Nb and Nb-AIN-NbN FFO for SIR

FL and PL spectra of the FFO : frequency 605 GHz; LW = 1.7 MHz; SR = 92 %

Linewidth and Spectral Ratio on the FFO frequency

TELIS (Terahertz Limb Sounder)

Balloon-Borne TELIS Instrument

TELIS Objectives:

- Measure many species for atmospheric science: CIO, BrO, O₃, HCI, HOCI, etc;
 - Chemistry, Transport, Climate
- Serve as a test platform for new sensors
- Serve as validation tool for future satellite missions
- Three independent frequency channels, cryogenic heterodyne receivers:
 - 500 GHz by RAL
 - 490-630 GHz by SRON-IREE
 - 1.8 THz by DLR (PI)

TELIS-SIR Main Parameters

Input frequency range	470 – 670 GHz
Minimum DSB noise temperature in the range	< 120 K
Output IF range	4 - 8 GHz
Spectral resolution	< 1 MHz
System stability (Allan variance)	20 s
Dissipated power (at 4.2 K stage)	< 30 mW
Operation temperature	< 4.5 K

SIR for TELIS – remote operation

Ś

Frequencies and substances selected for the first TELIS flight

##	FFO Frequency, GHz	Substances (High priority)
1	495.04	H ₂ ¹⁸ O
2	496.88	HDO
3	505.6	BrO (∆T = 0.3 K !!)
4	507.28	CIO
5	515.25	O ₂ /pointing /pressure
6	519.25	BrO (∆T = 0.3 K !!)
7	607.78	O ₃ isotopes
8	619.1	HCI (HOCI, CIO)

TELIS (Terahertz Limb Sounder)

TELIS-MIPAS at Esrange, Sweden; DLR March 2009; January 2010; March 2011 Balloon size: 400 000 m3; Payload weight: 1 200 kg Altitude: 40 km (max); Duration: 12 hours

Spectra measured at limb-sounding

Second TELIS flight January 2010; Esrange, Sweden

CIO diurnal cycle

Future SIR applications

New balloon missions

High-altitude airplanes

Space project "Millimetron"

Ground-space interferometer

Medical applications

Non-invasive medical diagnostics based on analysis of exhaled air

- human exhalation contains up to 600 volatile compounds
- some of them can be used as markers of diseases
 - **CO** Blood disease, asthma, oxidative stress
 - **NO** Diseases of respiratory tract, oncology
 - NH₃ Diseases of gastro-enteric tract, liver, kidney
 - **CH**₄ Malabsorption of hydrocarbons
 - **CS**₂ Markers of coronary arteries diseases, schizophrenia
 - $H_2\bar{O}_2$ Radiation injury, asthma

Conclusion

- Concept of the Phase-locked SIR is developed and proven.
- Nb-AIN-NbN FFOs and SIRs have been successfully implemented.
- New generation of the SIR with PL FFO for TELIS: Frequency range 470 – 670 GHz; Noise temperature < 120 K; IF bandwidth 4 - 8 GHz; Spectral resolution better 1 MHz; System stability (spectroscopic Allan variance) 20 sec; Beam Pattern - FWHM = 3 deg, with sidelobes < - 17 dB.
- Procedure for remote SIR operation has been developed and experimentally proven.
- 3 successful TELIS flights have been completed in March 2009, January 2010 and March 2011 at Esrange (Kiruna, Sweden).
- Future space and ground-base missions are under consideration.
- SIR Technology is mature enough for future space missions, non-invasive medical diagnostic, and security applications.