Superconducting Integrated THz Receivers: Development and Applications

Valery Koshelets, Andrey Ermakov, Lyudmila Filippenko, Nickolay Kinev, Oleg Kiselev, Mikhail Torgashin, Kotel’nikov Institute of Radio Engineering and Electronics, Moscow, Russia

Arno de Lange, Gert de Lange
SRON Netherlands Institute for Space Research, the Netherlands

Sergey I. Pripolzin, and Vladimir L. Vaks
Institute for Physics of Microstructure, Nizhny Novgorod; Russia
Superconducting Integrated THz Receivers: Development and Applications

Outline

• Superconducting Integrated Receiver (SIR)
• Flux Flow Oscillator (FFO) for the SIR
• TErahertz Limb Sounder (TELIS) project
• Results of the TELIS flights
• Future SIR applications
• Conclusion
Superconducting Integrated Receiver (SIR) with phase-locked FFO
Internal part of the SIR Microcircuit

Double-slot (dipole) twin SIS – 0.8 μm²

HM – 1.0 μm²

Nb-AlOx-Nb, Nb-AlN-NbN; \(J_c = 5 - 10 \text{ kA/cm}^2 \)

Optionally: SIS – \(J_c = 8 \text{ kA/cm}^2 \); FFO + HM = 4 kA/cm²
Nb-AlOx-Nb and Nb-AlN-NbN FFO for SIR

Graph:
- **x-axis:** FFO voltage (mV)
- **y-axis:** FFO current (mA)
- **Labels:**
 - 400 GHz
 - 700 GHz
 - Frequency Tuning
 - JSC, $V_B = V_g/3$
FFO frequency and power tuning

FFO Frequency:
- 0 GHz
- 400 GHz
- 500 GHz
- 600 GHz
- 700 GHz

FFO frequency = 500 GHz

2011, September 22
FL and PL spectra of the FFO:
frequency 605 GHz; LW = 1.7 MHz; SR = 92 %

2011, September 22
Linewidth and Spectral Ratio on the FFO frequency

![Graph showing the linewidth and spectral ratio on the FFO frequency. The x-axis represents the FFO frequency (GHz), and the y-axis represents the spectral ratio of the PL FFO (%). There are four different curves representing different materials: SR Nb-AlN-NbN (solid blue line), δf Nb-AlN-NbN (dashed blue line), SR Nb-AlOx-Nb (solid red line), and δf Nb-AlOx-Nb (dashed red line).]
TELIS (Terahertz Limb Sounder)

TELIS Objectives:

- Measure many species for atmospheric science: ClO, BrO, O₃, HCl, HOCl, etc; - Chemistry, Transport, Climate
- Serve as a test platform for new sensors
- Serve as validation tool for future satellite missions
- Three independent frequency channels, cryogenic heterodyne receivers:
 - 500 GHz by RAL
 - 490-630 GHz by SRON-IERE
 - 1.8 THz by DLR (PI)

Balloon-Borne TELIS Instrument
TELIS-SIR Main Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input frequency range</td>
<td>470 – 670 GHz</td>
</tr>
<tr>
<td>Minimum DSB noise temperature in the range</td>
<td>< 120 K</td>
</tr>
<tr>
<td>Output IF range</td>
<td>4 - 8 GHz</td>
</tr>
<tr>
<td>Spectral resolution</td>
<td>< 1 MHz</td>
</tr>
<tr>
<td>System stability (Allan variance)</td>
<td>20 s</td>
</tr>
<tr>
<td>Dissipated power (at 4.2 K stage)</td>
<td>< 30 mW</td>
</tr>
<tr>
<td>Operation temperature</td>
<td>< 4.5 K</td>
</tr>
</tbody>
</table>
SIR for TELIS – remote operation

FFO frequency 500 GHz

FFO linewidth, Hz vs. FFO voltage, mV

SIS current (mA) vs. New CL (mA)

Power of HP83724 (dBm) vs. HM voltage (mV)
Frequencies and substances selected for the first TELIS flight

<table>
<thead>
<tr>
<th>##</th>
<th>FFO Frequency, GHz</th>
<th>Substances (High priority)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>495.04</td>
<td>H_2^{18}O</td>
</tr>
<tr>
<td>2</td>
<td>496.88</td>
<td>HDO</td>
</tr>
<tr>
<td>3</td>
<td>505.6</td>
<td>BrO ($\Delta T = 0.3 \text{ K} !!$)</td>
</tr>
<tr>
<td>4</td>
<td>507.28</td>
<td>ClO</td>
</tr>
<tr>
<td>5</td>
<td>515.25</td>
<td>O$_2$ /pointing /pressure</td>
</tr>
<tr>
<td>6</td>
<td>519.25</td>
<td>BrO ($\Delta T = 0.3 \text{ K} !!$)</td>
</tr>
<tr>
<td>7</td>
<td>607.78</td>
<td>O$_3$ isotopes</td>
</tr>
<tr>
<td>8</td>
<td>619.1</td>
<td>HCl (HOCl, ClO)</td>
</tr>
</tbody>
</table>
TELIS (Terahertz Limb Sounder)

TELIS-MIPAS at Esrange, Sweden;
March 2009; January 2010; March 2011
Balloon size: 400,000 m³; Payload weight: 1,200 kg
Altitude: 40 km (max); Duration: 12 hours
Spectra measured at limb-sounding

FFO Freq = 495 GHz
Orbit – 30 km;
Increment – 1.5 km,
Tangent: 10.5 – 30 km

45 degrees up

\[\text{O}_3 \]
Second TELIS flight
January 2010; Esrange, Sweden

ClO diurnal cycle

BrO
30 times averaged

26 km
28 km
30 km
32 km
Future SIR applications

New balloon missions

High-altitude airplanes

Space project “Millimetron”

Ground-space interferometer
Medical applications

Non-invasive medical diagnostics based on analysis of exhaled air

- human exhalation contains up to 600 volatile compounds
- some of them can be used as markers of diseases

CO Blood disease, asthma, oxidative stress
NO Diseases of respiratory tract, oncology
NH₃ Diseases of gastro-enteric tract, liver, kidney
CH₄ Malabsorption of hydrocarbons
CS₂ Markers of coronary arteries diseases, schizophrenia
H₂O₂ Radiation injury, asthma
Gas Spectra Detection

PLL + mod. + sweep.

IF processor, Computer

Gunn
112-116 GHz

x5

gas cell

SIR

SIR control

NH₃ (p = 5*10⁻³ mbar)

Intensity (mV)

Frequency (GHz)

572,485 572,490 572,495 572,500 572,505 572,510
Conclusion

• Concept of the Phase-locked SIR is developed and proven.

• Nb-AlN-NbN FFOs and SIRs have been successfully implemented.

• New generation of the SIR with PL FFO for TELIS:
 Frequency range 470 – 670 GHz; Noise temperature < 120 K;
 IF bandwidth 4 - 8 GHz; Spectral resolution better 1 MHz;
 System stability (spectroscopic Allan variance) 20 sec;
 Beam Pattern - FWHM = 3 deg, with sidelobes < -17 dB.

• Procedure for remote SIR operation has been developed and experimentally proven.

• 3 successful TELIS flights have been completed in March 2009, January 2010 and March 2011 at Esrange (Kiruna, Sweden).

• Future space and ground-base missions are under consideration.

• SIR Technology is mature enough for future space missions, non-invasive medical diagnostic, and security applications.