The behavior of a long Josephson tunnel junction drastically depends on the distribution of the dc bias current. We investigate the case in which the bias current is fed in the central point of a one-dimensional junction. Such junction configuration has been recently used to detect the persistent currents circulating in a superconducting loop. Analytical and numerical results indicate that the presence of fractional vortices leads to remarkable differences from the conventional case of uniformly distributed dc bias current. The theoretical findings are supported by detailed measurements on a number of δ-biased samples having different electrical and geometrical parameters.

The task of this work is to study the properties of a δ-biased single-point injected Josephson tunnel junction configured in a radially uniform magnetic field H_r as that depicted in Fig. 1(b).

The tunnel barrier is topologically equivalent to a linear junction in an in-plane uniform field H_l as that depicted in Fig. 1(a).
juncture long dimension, for symmetry reasons, we do not need to specify the electrode configuration. Nevertheless the more general situation in which the bias current enters and leaves in two generic lateral points along the junction will deserve consideration in the future. We will show that, with the bias current centrally injected, both the static and dynamic junction properties reveal interesting phenomena whose understanding will serve as a base for the study of more general cases. In this regard, a considerable attention has been recently given to the case of 0–π transition Josephson tunnel junction obtained by closely situated current injectors.12,13 For the sake of completeness it is worth to remark that the lateral point injected bias was already treated in the literature but only in the limit of infinitely long JTJs.14–16

II. MODEL

It can be shown that for a δ-biased JTJ, as that sketched in Fig. 2, the gauge-invariant phase difference φ of the order parameters of the superconductors on each side of the tunnel barrier obeys the static or dc perturbed sine-Gordon equation,

\[\lambda^2 \frac{d^2 \phi}{dX^2} = \sin \phi(X) - \gamma \phi \left(\frac{X}{\lambda_j} \right), \]

in which the term \(\gamma = I_b / I_0 \) is the external bias current \(I_b \) normalized to \(I_0 = J_c L W \) and \(\delta \) is the δ function. In normalized units of \(x = X / \lambda_j \), the above partial differential equation (PDE) becomes

\[\frac{d^2 \phi}{dx^2} = \sin \phi(x) - \gamma \phi(x). \]

(1)

If the time \(t \) replaces \(x \) in Eq. (1) and a new phase \(\psi = \phi - \pi \) is defined, we obtain the equation for a lossless pendulum with an applied torque like a train of pulses with unitary period. In this framework, the boundary conditions will become constraints on the pendulum angular velocity half-period before and after each pulse.

It is possible to derive that, introducing the Heaviside step function \(H(x) \), the Lagrangian density \(\mathcal{L} \) of our system is constant along the barrier

\[\mathcal{L} = \frac{\phi^2}{2} + \cos \phi + \gamma \phi \phi(0) H(x). \]

By subtracting the constant quantity \(\gamma \phi(0)/2 \), we can rewrite the last expression as

\[\frac{\phi^2}{2} + \cos \phi + \gamma \phi(0)/2 \text{sgn}(x) = C, \]

(2)

with \(C \) being a constant depending on both the external bias and magnetic field. Note that if \(\phi(x) \) is discontinuous in \(x = 0 \), then \(2 \phi(0) = \phi(0) + \phi(0) \). The first two terms in Eq. (2) are related to the system free-energy density \(E(\lambda) = 1 - \cos \phi - \phi^2/2 \) while the last term represents the two-level potential \(U(\lambda) \) generated by the \(\delta \)-shaped forcing term.

Boundary conditions

The magnetic Josephson equation17 states that the phase gradient is proportional to the magnetic field

\[\nabla \phi = \frac{2\pi d_i \mu_0}{\Phi_0} \mathbf{H} \times \mathbf{n}, \]

(3)

where \(\mathbf{n} \) is a unit vector normal to the insulating barrier separating the two superconducting electrodes. If the two superconducting films have thicknesses \(d_{i,1,2} \) and London penetration depths \(\lambda_{i,1,2} \) and \(t_j \) is the barrier thickness, then the effective magnetic penetration \(d_e \) is given by,18

\[d_e = t_j + \lambda_{i,1} \tan \frac{d_{i,1}}{2\lambda_{i,1}} + \lambda_{i,2} \tan \frac{d_{i,2}}{2\lambda_{i,2}}, \]

which, in the case of thick superconducting films \((d_i \gg \lambda_{i}), \), reduces to \(d_e = \lambda_{i,1} + \lambda_{i,2} \) (since always \(d_i \gg t_j \)).

From Eq. (3) it follows that, for a linear JTJ in an external uniform field \(H_i \) applied in the junction plane perpendicular to its length \(L \), the boundary conditions are

\[\frac{d\phi}{dx} \bigg|_{x = \pm L/2} = \kappa H_i, \]

(4)

with \(\kappa = 2\pi d_i \mu_0 / \Phi_0 \). Being \(\lambda_j^2 = 2\pi d_i \mu_0/\Phi_0 = \kappa \lambda_j \) (\(\Phi_0 \) is the magnetic-flux quantum and \(\mu_0 \) is the vacuum permeability), we have \(\kappa \lambda_j = 1/J_c \lambda_j \). Introducing the critical field \(H_c \) for a unitary junction with a Fraunhofer magnetic diffraction pattern \(H_c = \Phi_0 / (\mu_0 d_i \lambda_j) = 2\pi J_c \lambda_j = 2\pi/\kappa \lambda_j \), we get \(\kappa \lambda_j = 2\pi/J_c \). In normalized units of \(h = \kappa \lambda_c = 2\pi H_i / H_c^* = H_i / J_c \lambda_j \), the boundary conditions (4) for Eq. (1) are

\[\frac{d\phi}{dx} \bigg|_{x = \pm L/2} = h, \]

(5)

in which we have introduced the junction normalized length \(l = L / \lambda_j \). Note that, with this notations, the normalized critical field \(h_j^* \) of a short JTJ equals \(2\pi l \). For the gapped annular junction in a radially uniform field \(H_r \), the boundary conditions for the PDE in Eq. (1) are independent on the gap angle19 and coincide with those in Eq. (5), but now with \(h = 2\pi H_r / H_c^* \). In other words, a linear junction in an in-plane field \(H_i \) and a gapped annular junction in a radial field \(H_r \) are governed by the same PDE with the same boundary condi-
tions. Therefore, for the remaining of the paper we will use the properly normalized field \(h \) both for linear and gapped annular JTJs. A radial magnetic field can be generated by a current flowing in a control line in the shape of a loop concentric to the annulus; however, the simplest way\(^1\) is to have a ring-shaped base electrode and to apply an external field perpendicular to it to induce tangential screening currents proportional to the applied field. The only disadvantage of this method is that the effective radial field felt by the gapped annular junction depends on geometrical factors such as the ring inner and outer radii and the junction position relative to the ring. The radial dependence of the current circulating in a superconducting ring has been calculated under many different conditions,\(^20\) and, among other things, it was found that the shielding currents mainly flow on the outer side of the ring.

From Eqs. (1) and (5), we have that the junction Josephson current \(i_j \) is proportional to the bias current; in fact, being \(\int_{-a}^{a} \phi(x) dx = 1 \), we get

\[
i_j = \frac{i}{I_0} = \frac{1}{I} \int_{-\delta/2}^{\delta/2} \sin \phi(x) dx
\]

\[
= \frac{1}{I} \left(\frac{d\phi}{dx} \bigg|_{x=\delta/2} - \frac{d\phi}{dx} \bigg|_{x=-\delta/2} \right) + \frac{\gamma}{I} = \gamma,
\]

that is, for a fixed bias current \(I_0 \), the zero-voltage current \(i_j \) passing through a \(\delta \)-biased JTJ is inversely proportional to its normalized length \((I_0=\lambda/2) \). In the well-known case of an overlap JTJ with uniform bias \(\gamma(x) = \gamma_0 \), it would be \(i_j = \gamma_0 \) (i.e., \(I_0 \)), meaning that \(\gamma_0 \) cannot exceed unity. In contrast, Eq. (6) implies that for \(\delta \)-biased junctions the largest value \(\gamma \) that the normalized bias current can achieve is determined by the junction normalized length. Later on it will be found that, in our case, \(|\gamma| \leq 4 \).

The jump in the phase gradient at the injection point (the origin axis in case) can be calculated directly from Eq. (1). For any \(0 < x_0 < l/2 \) we can write

\[
\left. \frac{d\phi}{dx} \right|_{x=x_0} - \left. \frac{d\phi}{dx} \right|_{x=-x_0} = \int_{-x_0}^{x_0} [\sin \phi(x) - \gamma \phi(x)] dx
\]

\[
= \int_{-x_0}^{x_0} \sin \phi(x) dx - \gamma.
\]

Taking the limit \(x_0 \rightarrow 0 \), the integral vanishes, being \(\phi(x) \) a continuous function; then the phase derivative jumps at the injection point \(x=0 \),

\[
\left. \frac{d\phi}{dx} \right|_{x=0^+} - \left. \frac{d\phi}{dx} \right|_{x=0^-} = -\gamma.
\]

This equation was first reported by Kuprianov et al.\(^14\) [see also Ref. 15 at (par.8.5)] for JTJs with lateral single-point injection. We can rewrite Eq. (7) as

\[
\left. \frac{d\phi}{dx} \right|_{x=0^-} = -\left. \frac{d\phi}{dx} \right|_{x=0^+} = \gamma/2 + h_0,
\]

in which the constant \(h_0 \) is a measure of the (exponential) penetration of the external magnetic field (if any) into the center of the junction; in general, \(h_0 \) cannot be determined \textit{a priori}.

III. Analytical Approximate Solutions for Long JTJs

In this section we will discuss the possible analytical approaches to determine the phase profile of a point-injected long JTJ in the Meissner state. In absence of an external bias \(\gamma \) and a magnetic field \(h \) the Josephson phase profile \(\phi(x) \) is identically equal to zero. If \(\gamma \) and \(h \) are sufficiently small, then \(|\phi(x)| \ll 1 \), so that Eq. (1) can be linearized, being \(\sin \phi \approx \phi \). Barone et al.\(^21\) pointed out that a piecewise linear current phase relationship \(j_j = \chi \phi \approx 1 \) (with \(\chi \in [0.5, 1] \)) can correctly handle the case when \(|\phi(x)| < \pi/2 \). Obviously in a linear approximation the phase profile looses its correct structure within the scale of \(\lambda \), but averaged results such as the Josephson current are not significantly affected by the approximation. However, as will be shown later on, for \(\delta \)-biased JTJs in the Meissner state it is \(|\phi(x)| \approx \pi \) so that the piecewise linear approximation fails and a cubic approximation, \(\sin \phi = \alpha \phi - \beta \phi^3 \), can be conveniently adopted leading to a Duffing-type differential equation for the oscillation of a soft (\(\alpha, \beta > 0 \)) spring system. In the special case of the underdamped and undamped Duffing equation, exact solutions can be written in terms of Jacobi’s elliptic functions.\(^23\) Further, approximate solutions of the forced Duffing equation could be found using the perturbation methods\(^24\) when \(\beta < \alpha \). However, simple solutions, Eq. (1), can be readily obtained in the approximation of very long junctions.

A. \(h \neq 0 \) and \(\gamma = 0 \), \(l/2 > 2\pi \)

We begin with the case of no externally applied magnetic field which, in the well-studied case of uniform bias, results in a constant phase profile \(\phi(x) = \sin^{-1} x_0 \) (mod \(2\pi \)). For symmetry reasons, in the case of \(\delta \)-biased JTJs, the solution of Eq. (1) has to be an even function \(\phi(x) \). Therefore its gradient is an odd function, \(\phi'(x) + \phi'(-x) = 0 \), meaning that \(h_0 = 0 \) in Eq. (8). With \(h_0 = 0 \), Eq. (8) provides two extra conditions on the phase left and right derivative at the injection point.

\[
\left. \frac{d\phi}{dx} \right|_{x=0^-} = -\left. \frac{d\phi}{dx} \right|_{x=0^+} = \gamma/2.
\]

For \(l > 4\pi \) (strictly in the limit \(l \rightarrow \infty \)), an approximate solution of Eq. (1) fulfilling the above conditions is a cusplike function,

\[
\phi(x) = \pm 4 \tan^{-1} \exp -(|x| + \xi),
\]

in which \(\xi \) is a non-negative constant set by the bias current \(\gamma \); Eq. (10) can also be cast in the form\(^9\)

\[
\pm \sin \phi(x)/2 = \pm \text{sech}(|x| + \xi). \quad \text{It is} \quad \phi'(-\infty) = \phi'(\infty) = 0 \quad \text{and} \quad \phi(0) = \pm 4 \tan^{-1} \exp(-\xi). \quad \text{The sign in front of Eq. (10) concords with that of the external bias current. With} \xi = 0 \quad \text{(and positive} \gamma), \quad \text{then} \phi(0) = \pi, \quad \text{meaning that Eq. (10) corresponds to a semifluxon (} \pi \text{ jump) on the left side of the junction and antimesifluxon (} -\pi \text{ jump) on the right side, as shown in Figs. 3(a)–3(d) for} -10 < x < 10 \quad \text{(we observe that, as required,} \phi(0) = \pi, \quad \text{the phase profile looses its correct structure within the scale of} \lambda, \quad \text{but averaged results such as the Josephson current are not significantly affected by the approximation. However, as will be shown later on, for} \delta \text{-biased JTJs in the Meissner state it is} |\phi(x)| \approx \pi \quad \text{so that the piecewise linear approximation fails and a cubic approximation,} \sin \phi = \alpha \phi - \beta \phi^3, \quad \text{can be conveniently adopted leading to a Duffing-type differential equation for the oscillation of a soft (} \alpha, \beta > 0 \text{) spring system. In the special case of the underdamped and undamped Duffing equation, exact solutions can be written in terms of Jacobi’s elliptic functions.} \text{Further, approximate solutions of the forced Duffing equation could be found using the perturbation methods when} \beta < \alpha. \quad \text{However, simple solutions, Eq. (1), can be readily obtained in the approximation of very long junctions.} \]
\[\phi_{\text{ex}} = \sin \phi, \text{ everywhere, but for } x=0. \]

The dependence of \(\xi \) on \(\gamma \) can be found observing that, in force of Eq. (7), \(\gamma = \phi'(0-) - \phi'(0+) = \pm 4 \sech \xi \); henceforth, the largest possible amplitude for the normalized bias \(|\gamma_c|=4 \) is achieved when \(\xi=0 \). For \(\xi<0 \) the phase in the origin grows above the threshold value \(\phi'(0)=\pi \) and the static solution in Eq. (10) is no longer stable: the two semifluxons develop into integer fluxons driven away in opposite directions under the effect of the Lorentz force associated with the bias current. According to Ref. 15 and from numerical simulations (reported later), we found that the instability arises when the amplitude of \(\gamma \) exceeds the critical value \(\gamma_c=4 \), corresponding to \(\xi_l=4 \). With such a notation \(\gamma = \pm \gamma_c \), sech \(\xi \), i.e., \(\xi = \cosh^{-1} \left(\gamma_c/|\gamma| \right) \). The last expression allows us to find the dependence of \(\phi'(0) \) on \(\gamma \); it is found that \(\cos \phi'(0)=1-2(\gamma/\gamma_c)^2 \) [i.e., \(\sin \phi'(0)/2=\gamma/\gamma_c \)]. Inserting the value \(\gamma_c=4 \) in Eq. (6), we find that for very long junctions the normalized zero-field critical current is inversely proportional to the junction length,

\[i_c(h=0)=\frac{\gamma_c}{l}, \quad (11) \]

as for an asymmetric inline junction\(^9\) with the only difference that \(\gamma_c=2 \) in that case. Indeed, a long \(\delta \)-biased JTJ in zero external field is equivalent to two inline asymmetric junctions in a parallel configuration; this is no longer true in presence of an external field \(h \). For a generic \(\gamma \) value in the interval \([−4, 4]\) the phase difference \(\Delta \phi(0) = \phi(0) - \phi(\infty) = \phi(0) - 2 \sin^{-1} \gamma/\gamma_c \) corresponds to what in nowadays language is called a \(k \)-fractional vortex, where \(k=\Delta \phi/(2 \pi) = \pi^{-1} \sin^{-1} \gamma/\gamma_c \). Semi- \(\xi=0 \) and fractional (\(\xi>0 \)) vortices are presently receiving a great deal of attention in the context of \(0-\pi \) transition Josephson junctions.\(^{12,25-27}\)

In summary, the main difference between short and long \(\delta \)-biased JTJs is that in the former case the solution becomes unstable when \(\gamma > \gamma_c=1 \) and \(\phi'(0) > \pi/2 \) while in the latter case the instability develops for \(\gamma > \gamma_c=4 \) and \(\phi'(0) > \pi \). The gradual crossover from intermediate to long JTJs has to be calculated numerically; it was found to be nicely described by the following empirically found relationships,

\[\gamma_c(h=0, l)=4 \tanh \frac{l}{4}, \quad (12) \]

\[\phi'(x=0, h=0, l)=\frac{\pi}{2} + \tan^{-1} \exp(l-\pi). \quad (13) \]

B. \(h \neq 0 \) and \(\gamma=0 \), \(l/2 > 2\pi \)

With \(\gamma=0 \), the Eq. (1) reduces to
The gradual crossover from intermediate to long JTJs has also have the same presence of a given external magnetic field, while the second (saturating) term dominates for large l values. It is worth to remark that if no current feeds a junction, then its electrode configuration does not affect the phase profile; in other words, inline, overlap and δ-biased JTJs all have the same phase profile as in Eq. (15) in presence of a given external magnetic field h; consequently, they also have the same (first) critical field.\(^\text{(15,22)}\)

$$h_c(l) = \frac{2\pi}{l} \frac{2}{1 + \tanh \frac{l}{2\pi}}.$$
C. $h \neq 0$, $\gamma \neq 0$, $l/4 > 2\pi$

Approximate static phase profiles for nonzero h and γ values are obtained observing that Eq. (1) can be rewritten as two identical, although independent, OS equations for the left ($-l/2 \leq x < 0$) and right ($0 < x \leq l/2$) inline asymmetric half junctions each with an effective bias current $\gamma/2$. The boundary conditions for the left and right half junctions are simply given by Eqs. (5) and (9),

$$\frac{d\phi}{dx} \bigg|_{x=-l/2} = h \frac{d\phi}{dx} \bigg|_{x=0} = \frac{\gamma}{2},$$

(16)

$$\frac{d\phi}{dx} \bigg|_{x=l/2} = -\frac{\gamma}{2} \frac{d\phi}{dx} \bigg|_{x=0} = h.$$

(17)

It is convenient to rewrite the constant C in Eq. (2) as $C = (2-k^2)/k^2$; for $C > 1$, then $k^2 < 1$ and vice versa. According to the notation of Ref. 14, the above conditions can be rewritten in terms of Jacobian elliptic functions $dn(x, k^2_d)$ and $cn(x, 1/k^2_e)$ of argument x and modulus k^2_d and $1/k^2_e$, respectively. For $k^2_d \leq 1$,

$$dn\left(\frac{l/2 - x_{0d}}{k_d}, k^2_d\right) = \frac{k_d}{2} h \quad \text{and} \quad dn\left(-\frac{x_{0d}}{k_d}, k^2_d\right) = \pm \frac{k_d \gamma}{2},$$

while for $k_e \geq 1$,

$$cn(l/2 - x_{0e}, 1/k^2_e) = \frac{k_e}{2} h \quad \text{and} \quad cn(-x_{0e}, 1/k^2_e) = \pm \frac{k_e \gamma}{2}.$$

Being the above-mentioned elliptic functions limited to the $[-1,1]$ range, the solutions of the OS problem can be found as far as both $|h|$ and $|\gamma/2|$ are smaller than 2. Once $h \in [-2,2]$, $\gamma \in [-4,4]$ and $l > \pi$ are given, the couples (x_{0d}, k_d) or (x_{0e}, k_e) can be numerically found. This mathematical procedure allows to find many (sometime physically noninteresting) solutions and it is well known that the number of possible solutions increases with the junction normalized length. For $l/2 \geq 4\pi$, the approximate solution of Eq. (14) is

$$\phi(x) = \pm 4 \left[\tan^{-1}(\exp(x - \xi)) - \tan^{-1}(\exp(-x + \xi - l/2)) \right] \quad \text{for} \quad -l/2 \leq x < 0$$

$$= \pm 4 \left[\tan^{-1}(\exp(-x - \xi)) + \tan^{-1}(\exp(x - \xi - l/2)) \right] \quad \text{for} \quad 0 < x \leq l/2$$

(18)

in which ξ and η are two non-negative independent constants; in fact, $\gamma \approx \pm 4$ sech ξ and $h \approx \pm 2$ sech η. If $h=0$, then $\xi \rightarrow \infty$ and $\phi(x)=d\phi'(x)$. Vice versa, if $\gamma=0$, then $\eta \rightarrow \infty$ and $\phi(x)=d\phi'(x)$. In other words, the generic static phase profile of a long δ-biased junction in the Meissner state is obtained simply by the sum of (four) noninteracting fractional vortices. The sign in front of Eq. (18) concords with that of the product $h \gamma$. Looking at the Eqs. (16) and (17), it is seen that an interesting situation occurs when $h = \pm \gamma/2$. For $h=0$ the bias current γ flows symmetrically in the left and right junction sides [see Fig. 3(d)]. With $h \neq 0$ the symmetry is broken and the current flows mainly in one of the junction sides. When $|h|=\gamma/2=2$, then $\xi=\eta$ and the applied current only flows in one junction side, while in the other side the average Josephson current vanishes. For $h=\gamma/2=2$ ($\xi=\eta=0$) the above expression for $\phi(x)$ and its sine are depicted in Figs. 5(a) and 5(b), respectively. Only the junction right side contributes to the Josephson current.

Let us remark that, being $|\gamma| \leq \gamma_c$, in force of Eq. (6), for the largest Josephson current i_c we have

$$|i_c(h)| = \frac{\gamma_c}{l}.$$

(19)

In other words, for long δ-biased JTs in the Meissner state ($-2 \leq h \leq 2$) the critical current is independent on the externally applied field. There is no other junction configuration for which this peculiarity occurs. The above result is only apparently in contrast with Kuprianov’s quadratic prediction for infinitely long point-injected junctions.

FIG. 5. (a) $\phi(x)$ as in Eq. (18) for $h=\gamma/2=2$ ($\xi=\eta=0$) and $l=20$; (b) $\sin \phi(x)$. Only the junction right side contributes to the Josephson current. It is $\sin \phi(x) = \phi_{\text{as}}(x)$ and $\cos \phi = 1 - [\phi(x)]^2/2$.

054506-6
leading to $i_c(\pm h_c) = (1 + \sqrt{2})i_c(0)/2 \approx 1.2i_c(0)$. In fact, Eq. (20) also takes into account the penetration of fluxons into the barrier leading to the non-Meissner regime characterized by higher modes phase profiles14 that will be discussed in the next section. In 1985 Radparvar and Nordman16 reported the experimental magnetic diffraction pattern of a very long (hypothetical) Nb-Pb laterally injected JTJ in reasonable agreement with Eq. (20) despite their electrode configuration only roughly realized the point-injected approximation.

IV. STATIC NUMERICAL SIMULATIONS

In this section we discuss the numerically obtained solutions of the PDE in Eq. (1) with boundary conditions as in Eq. (5). The direct numerical integration of Eq. (1) poses large problems of stability due to the fact that there are no losses in the system; to avoid this problems, we recurred to the integration of the time-dependent perturbed sine-Gordon equation

$$
\phi_{xx} - \phi_y - \sin \phi = \gamma \phi_t(x) + \alpha \phi_y - \beta \phi_{xtt},
$$

with $\alpha=3$ in order to have a fast decay of the temporal features of the solution toward a static solution (in real device $\alpha \leq 0.01$). The term containing the surface losses was simply dropped to save computer time, i.e., $\beta=0$. Equation (21) has been numerically integrated by using the commercial finite-element simulation package of COMSOL MULTIPHYSICS (www.comsol.com) for different values of the normalized length l which enters the PDE through the boundary conditions. The δ function has been approximated by the continuous function $f(x) = \rho \text{sech}^2(2\rho x)$ with the parameter $\rho = O(10^2)$ [note that $f(0) = \rho$, $f(1/\rho) = \rho \text{sech}^2 2 = 0.07\rho$, and $\int_{-\infty}^{\infty} f(x) dx = 1$]

In order to trace the different lobes of i_c vs h, it is crucial to start the numerical integration with a proper initial phase profile. As far as $l < \pi$ the initial condition for the numerical integration of Eq. (1) was simply set to $\phi(x) = 0$. In order to find the several possible initial conditions for $l > \pi$, the OS problem was solved for a given value of h and with γ set to zero. Once the initial phase derivative was known, also the initial phase profile could be easily derived14.

Finally, during the numeric calculation, γ was changed until the numerical solution becomes unstable. We have numerically computed γ_c as the maximum allowed value of the bias current for each chosen value of the magnetic field h. Once γ_c was found, the corresponding critical current i_c could be calculated either numerically or, in an equivalent manner, resorting to Eq. (6). As expected, a general peculiarity of the numerically found phase profiles for long enough δ-biased junctions is that the phase values at the junction extremities ($x = \pm l/2$) do not depend on γ; vice versa, the phase behavior near the origin does not depend on the applied field h.

Figures 6(a)–6(d) display the magnetic diffraction patterns for point-injected JTJs with different normalized lengths l. We remark that the $i_c(h)$ patterns are symmetric
around $h=0$. For comparison we also report the $i_c(h)$ for a uniform bias; more precisely, the full dots refer to the point-injected current, while the open (gray) dots correspond to the uniform bias. For $l=1$, the numerical data (not reported) closely follow the expected Fraunhofer-type dependence (with $h_c=2\pi$) with differences only in the third significant digit. As shown in Fig. 6(a), for $l=2$ we still have a Fraunhofer-type pattern. Pronounced deviations from the small junction behavior were found for $l=4$, but, as can be seen in Fig. 6(b), they disappear for large filled values. Increasing l, some ranges of magnetic field develop in correspondence of the pattern minima in which i_c may assume two (or more) different values corresponding to different phase profiles inside the barrier. In fact, each pattern lobe is associated with a given vortex structure; more precisely, in the first lobe which, for $l=4$, goes from $h=0$ to $h_c=2.2$, the external magnetic field is shielded and vortex cannot penetrate into the barrier (Meissner state). However, at the very end of this lobe a fluxon is present in the junction. In the successive lobes the magnetic field penetrates into the barrier and vortices are created in the barrier in a way which closely recalls the behavior of the type-II superconductors, even though the vortices we are dealing with are quite different from the Abrikosov ones as they do not have a normal core. In the second lobe, moving from $h=3$ to $h_c=4.6$, we start from a phase configuration very similar to that at the right side of the first lobe in which one vortex is present in the barrier and we end up with two bunched fluxons. Adopting the terminology used in Ref. 14, we refer to the first (Meissner) lobe as to “0 to 1 vortex mode” lobe, the second as the “1 to 2 vortex mode” lobe, and so on. In general, one may talk about the “n to $n+1$ vortex mode” when the junction contains more than n but less than $n+1$ vortices. As l is increased from 4 to 8 drastic changes occur (the crossover point being approximately 2π), as shown in Fig. 6(c): the critical current gets smaller and smaller, according to Eq. (11), and the principal lobe gets flatter and flatter resulting in a rather large plateau; further, the lobes broaden and overlap each other with h_c converging to 2. This behavior is even more pronounced for $l=16$ as shown in Fig. 6(d). In other words, the main (Meissner) lobe is a rectangle with corners in $h=0$ and 2 and $\gamma=0$ and 4. The phase profiles in the nontrivial corners are those already shown in Figs. 3–5.

The phase profile corresponding to the 2 and 3 fluxon modes are reported in Figs. 7(a) and 7(b), respectively, for $h(\gamma)$ slightly below (above) its critical value. It is evident that the vortices only penetrate in left side of the junction. However, the situation reverses by reversing either h or γ. The maximum supercurrent associated to a given vortex mode increases with the mode order; this is peculiar of δ-biased JTJs.

V. EXPERIMENTS

To investigate the properties of δ-biased JTJs, we have used high-quality Nb/Al-Al$_{ox}$/Nb JTJs fabricated on silicon substrates using the trilayer technique in which the junction is realized in the window opened in a SiO insulator layer. We measured a large number of both linear and gapped annular junctions all of them with width $W=2\mu m$ but whose lengths varied from $L=80$ to $335\mu m$. The width of the electrodes carrying the current in and out of the barrier was $10\mu m$. The thickness of the SiO$_2$ insulator layer was 200 nm and the so-called “idle region,” i.e., the overlapping of the wiring layer onto the base electrode was about 1 μm for all the junctions. In order to vary the sample normalized lengths over a large range values, we used two sets of samples having quite different critical current densities ($J_c=100$ A/cm2 and 3 kA/cm2), corresponding to $\lambda_c=80$ and $\approx 12\mu m$. In such a way samples were available with l spanning from about 1 to about 30. The values of the Josephson penetration depth λ_c were calculated taking into account the effect of the lateral idle region. In Fig. 8 we report the log-log plot of the measured zero-field critical currents $i_c(0)$ of many δ-biased JTJs versus their reduced length L/λ_c. The critical current has been normalized to the small junction theoretical value calculated as the 70% of the current jump at the junction gap voltage. We observe that, for large normalized length, the experimental data clearly follow an inverse proportionality law as expected from Eq. (11) and the transition from long to short junctions is nicely fitted by the empirical expression in Eq. (12) (solid line).

On real samples, the measurements of maximum supercurrent against the external field often yield the envelope of the lobes, i.e., the current distribution switches automatically to the mode which for a given field carries the largest super-
Sometimes, for a given applied field, multiple solutions are observed on a statistical basis by sweeping many times on the junction current-voltage characteristic. Figures 9\(a\)–9\(d\) display the measured magnetic diffraction patterns for four linear samples in a uniform in-plane field with selected normalized lengths. We found an excellent agreement with the results of numerical calculation discussed in the previous section. Marked deviation from the small junction Fraunhofer-type behavior were observed for \(L=3\lambda_j\). It is evident that, for longer JTJs, the \(I_c(H)\) is made of few flat segments corresponding to different static phase solutions containing more and more fluxons. Since the number of possible static solutions increases with the junction normalized length, it is straightforward to assume that, as \(l\) increases, the number of flat segments increases too, while their lengths decrease so that to merge in a monotonically increasing critical current as predicted in Ref. 14 and observed in Ref. 16. We also note some similarity with the flux-flow oscillator pattern reported in Fig. 18 of Ref. 29.

As shown in Fig. 10, analogous results were obtained for samples with the gapped annular geometry in a radially uniform, although uncalibrated, magnetic field. As explained in Sec. I the radial field was obtained by applying a uniform magnetic field perpendicular to the superconducting ring which constitutes the base electrode of the junction itself. The asymmetry of both diffraction patterns is an extrinsic self-field effect due to the configuration of the current-carrying leads on the chip.

The dynamic of a \(\delta\)-biased JTJ was also investigated both experimentally and by numerically integrating the time-dependent Eq. (21) whose steady-state solutions were typical of a soliton moving in a two-level potential with the fluxon(s) being accelerated only when passing through the origin. We have focused our attention on the zero-field single fluxon shuttling mode. Figure 11 compares the first zero-field step current. Sometimes, for a given applied field, multiple solutions are observed on a statistical basis by sweeping many times on the junction current-voltage characteristic. Figures 9\(a\)–9\(d\) display the measured magnetic diffraction patterns for four linear samples in a uniform in-plane field with selected normalized lengths. We found an excellent agreement with the results of numerical calculation discussed in the

![Graphs showing critical currents and magnetic fields](image-url)
profiles of a \(\delta \)-biased (solid line) and a uniformly biased (dashed line) long overlap JTJs having the same length \(L = 150 \, \mu\text{m} \) and the same Josephson current density \(J_c = 3 \, \text{kA/cm}^2 \). The data were taken a \(T = 6 \, \text{K} \). Contrary to the case of uniform bias, a current threshold value is needed to avoid that fluxon stops due to friction. This value, of course, depends on the junction length and losses: the longer the junction, the smaller should the losses be to maintain a finite-voltage dynamic steady state. The \(\gamma \)–\(\phi_c \) plot, corresponding to the zero-field step profile, is smoother than that obtained when the bias is uniform and is characterized by fine structures associated to the fluxon interactions with plasma waves\cite{30,31} originated by the fluxon itself when passing across the potential discontinuity. Often the back-switching transition has been observed at the top of the step, as indicated by the solid arrow pointing to the zero voltage state. As a matter of fact, point-injected junctions seem not to reveal new dynamical states. We only remark that displaced linear slopes\cite{22} were numerically found and experimentally regularly observed in absence of magnetic field and for junction with large losses (\(a = 1 \) or \(T > 0.7 T_c \)), when the dc bias exceeded its critical value. Displaced linear slopes were also observed in the presence of a magnetic field which, by increasing the field further, eventually develops in large amplitude flux flow steps.

VI. CONCLUSIONS

In this paper we focused on \(\delta \)-biased (or point-injected) long Josephson tunnel junctions. Our analysis goes much beyond the previous theoretical\cite{14} and experimental\cite{16} works in which only extremely long junctions were treated. We considered a linear JTJ in a uniform magnetic field and a gapped annular junction in a radially uniform field. These two electrode configurations [shown in Figs. 1(a) and 1(b), respectively] are topologically equivalent, that is, they are described by the same partial differential equation [Eq. (1)] with the same boundary conditions [Eq. (5)]. Apart from their intriguing physical properties, the interest for \(\delta \)-biased JTJs stems from the fact that they were successfully used to detect trapped fluxoids in a recent experiment aimed to study the spontaneous defect production during the fast quenching of a superconducting loop.\cite{1} The main peculiarity of a \(\delta \)-biased junction is the jump of the phase derivative at the point were the current is injected. We have shown that this discontinuity naturally leads to the formation of fractional vortices. In the last few years there has been a great deal of interest in the phase discontinuity observed in \(0 \to \pi \) transition junctions which can be modeled with a bias made of two closely spaced \(\delta \) functions with opposite sign, more precisely by the derivative of a \(\delta \) function.\cite{32} We believe that our findings on the properties of a single \(\delta \) function can shed some more light on the mechanisms responsible of the appearance of fractional vortices in \(0 \to \pi \) transition Josephson tunnel junctions.

ACKNOWLEDGMENTS

The authors thank A. Gordeeva for useful discussions and for helping us with the dynamical numerical simulations. One of us (V.P.K.) acknowledges the financial support from the Russian Foundation for Basic Research under the Grants No. 09-02-00246 and No. 09-02-12172.

FIG. 10. Experimental magnetic diffraction patterns in a radially uniform magnetic field \(H_r \) for two gapped annular samples having the same critical current density \(J_c = 3 \, \text{kA/cm}^2 \) (corresponding to \(\lambda_j = 12 \, \mu\text{m} \)) and different lengths \(L \). (a) \(L = 82 \, \mu\text{m} \) and (b) \(L = 200 \, \mu\text{m} \).

FIG. 11. Profiles of the first zero-field step for overlap junctions with \(L = 150 \, \mu\text{m} \) and \(J_c = 3 \, \text{kA/cm}^2 \) (corresponding to \(\lambda_j = 12 \, \mu\text{m} \)) (a) \(\delta \) bias (solid line) and (b) uniform bias (dashed line). The data were taken a \(T = 6 \, \text{K} \). The arrows indicate the switching direction at the top of the step.
*roberto@sa.infn.it

28. Let us remind that for $k_c < 1$, $\text{cn}(u, k_c^2)$ is a periodic odd function with period $\text{U}_c = 4K(1/k_c^2)$ and, for $k_d < 1$, $\text{dn}(u, k_d^2)$ is periodic even with period $\text{U}_d = 2K(k_d^2)$ (where $K(k)$ is the complete elliptic integral of first kind: $k^2 \in [0, 1]$ and $K(k^2) \in [\pi/2, \infty]$). In the limit $k_d \to 1$ (corresponding to the limit $l \to \infty$), the period diverges and $\text{cn}(u, 1) = \text{dn}(u, 1) = \text{sech} u$.