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We report on the experimental verification of the Zurek-Kibble scenario in an isolated superconducting ring
over a wide parameter range. The probability of creating a single flux quantum spontaneously during the fast
normal-superconducting phase transition of a wide Nb loop clearly follows a scaling relation on the quenching
time �Q, as one would expect if the transition took place as fast as causality permits. However, the observed
Zurek-Kibble scaling exponent �=0.62�0.15 is two times larger than anticipated for large loops. Assuming
Gaussian winding number densities we show that this doubling is well founded for small annuli.
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The Zurek-Kibble �ZK� scenario1–3 proposes that continu-
ous phase transitions take effect as fast as possible i.e., the
domain structure after the quenching of the system initially
reflects the causal horizons. This proposal can be tested di-
rectly for transitions whose domain boundaries carry visible
topological charge. In this Rapid Communication we shall
show that, with qualifications, this scenario is strongly cor-
roborated by the behavior of superconducting loops, for
which the topological defect is a fluxoid i.e., a supercurrent
vortex carrying one magnetic flux quantum �0=h / �2e�
�2.08�10−15 Wb.

The basic scenario is very simple. Consider a planar
low-Tc superconductor in which a hole has been made of
circumference C. In the Meissner state the order parameter
for the superconductor is a complex field � with phase �,
�=	ei�, where �	�2 measures the density of Cooper pairs. On
quenching the system from the normal to superconducting
phase, causality prevents the system from adopting a uniform
phase. If, on completion of the quench, we follow the peri-
odic phase ��x� �mod 2
� along the boundary of the hole
�coordinate x�, we can define a winding number density:
n�x�=d��x� /dx / �2
�. The total normalized magnetic flux
through the hole is, in units of �0, the winding number,

n = �
0

C

n�x�dx =
��

2

, �1�

where �� is the change in �. In the absence of an external
magnetic field, on average �n�=0, but it will have nonzero
variance ��n�2= �n2�, which is what can be measured in
terms of the probabilities f�m to trap �m flux quanta: �n2�
=�m=−�

� m2fm. According to Ref. 2, on completion of a ther-
mal quench having a given inverse quench rate
�Q=−Tc / �dT /dt�T=Tc

, the phase � is correlated over distances

2
̄, where ̄ was predicted to scale2 with the quench time
�Q,

̄ 	 0
 �Q

�0
��

. �2�

̄, also called the ZK causal length, is defined in terms of the
cold correlation length 0 and the Ginzburg-Landau relax-
ation time �0 of the long wavelength modes. The ZK scaling
exponent � is determined by the static critical exponents of
the system and, in the mean-field approximation, �=1 /4.1 If
we make the further assumption that there is a random walk

in phase on a scale 2
̄ then, for a hole of radius r, circum-

ference C�2
̄,

�n2� 	
C

2
̄
=

r

0

 �Q

�0
�−�

. �3�

For small rings with C�2
̄ the likelihood of seeing two
or more units of flux is small and �n2�	 f+1+ f−1= f1, the
probability of single fluxoid trapping. It is plausible to
extrapolate Eq. �3� to

f1 	 �n2� 	
r

0

 �Q

�0
�−�

, �4�

showing scaling behavior of f1 with the same exponent. We
note that the ZK argument makes no assumptions about the
rest of the superconductor, equally valid for the phase change
along the inner circumference of an annulus as it is for the
phase change around a single hole in a superconducting
sheet. In 2003 the first experiment with superconducting
loops4 was performed to test Eq. �3�. The experiment con-
sisted of taking an isolated array of thin-film wide rings and
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making it undergo a forced phase transition by heating it
above its superconducting critical temperature and letting it
to cool passively back toward the LHe temperature. Once the
thermal cycle is over, the rings are inspected by a scanning
superconducting quantum interference device and the num-
ber and polarity of any trapped fluxoids determined. These
rings, of amorphous Mo3Si thin films, had thickness almost
one order of magnitude smaller than the low temperature
London penetration depth. Although this provides favorable
conditions for thermally activated phenomena it drastically
increases the likelihood that nucleated vortices escape
through the ring walls during the fast quench. In fact, the
experimental outcome was totally at variance with the scal-
ing above. However, the prediction �Eq. �3� presupposes
that we can ignore the contribution to the flux from the freez-
ing in of thermal fluctuations of the magnetic field5 and the
results of Ref. 4 could be explained in terms of the freezing
of thermally activated fluxoids in a similar spirit to Ref. 5.

In this Rapid Communication we shall present results
from an experiment with high-quality Nb film rings with r
=30 �m, two times thicker than their low temperature Lon-
don penetration length �L,Nb; the film thickness and compo-
sition were chosen to reduce the thermal activation of flux-
oids and, at the same time, ’the washing out’ of fluxoids
generated by the conventional causality mechanism. In our
case the contribution �f1 to the probability of finding a unit
of flux from thermal magnetic field fluctuations is
approximately5

�f1 � �kBTc�r�0/�0
2 	 6 � 10−4, �5�

and can be safely ignored. We therefore look for scaling
behavior in �Q.

Here a different way of counting both the number and the
polarity of generated defects has been adopted. It is based on
the detection of the persistent currents Js circulating around a
hole in a superconducting film, when one or more fluxoids
are trapped inside the hole. The circulating currents screen-
ing the bulk of the superconductor from the trapped flux
induce a magnetic field H in the volume around the ring,
such that Js=��H. By placing a Josephson tunnel junction
�JTJ� along the perimeter of the hole in the area where this
field passes, any trapped fluxoid will result in a modulation
of the JTJ critical current, similar to the effect of an external
field applied perpendicular to the ring. Indeed, this method is
strongly inspired by the results found investigating the ef-
fects of a transverse field on Josephson junctions of various
geometries.6 The geometry of our experiment is sketched in
Fig. 1; the black wide ring is a 200-nm-thick Nb film, which
also acts as the common base electrode for two JTJs whose
top electrodes are depicted in gray. The JTJs have the shape
of gapped annuli and the bias current is supplied in their
middle point; this geometrical configuration is characterized
by a peculiar magnetic diffraction pattern: for small magnetic
fields the critical current increases both for positive and
negative field values.15 The original purpose of having two
counter electrodes on the base ring was that any screening
current circulating on the outer ring circumference will pref-
erentially affect the outermost JTJ, and vice versa for the
screening current on the inside of the ring. Since the persis-

tent currents due to trapped flux mainly flow in the inner ring
circumference,7 in this experiment we only used the inner-
most JTJ. The layout shown in Fig. 1, with a few key differ-
ences, bears remarkable topological similarity to the one
used in a series of experiments by us to demonstrate the ZK
scaling behavior of Eq. �3� in annular JTJs.8–12 The most
obvious difference in the design is the inclusion of the two
junction counter electrodes on top of the ring-shaped base
electrode. The second change is the removal of a small sec-
tion of the full annular junction to leave a gapped annular
junction with the purpose of avoiding fluxons created inside
the JTJ at the Josephson phase transition. Should any be
produced, they will simply migrate through the junction ex-
tremities driven by the applied bias current needed to over-
come eventual pinning potentials. This leaves the experiment
only sensitive to the fluxoids produced in the ring at the
phase transition.

As with our previous experiments, the present one relies
on a fast heating system, obtained by integrating a Mo resis-
tive meander line on the 4.2�3�0.35 mm Si chip contain-
ing the ring with the Nb/AlOx/Nb JTJs. The quench time �Q

could be continuously varied over more that four orders of
magnitude �from 20 s down to 1 ms� by varying the width
and the amplitude of the voltage pulse across the integrated
resistive element. In order to determine the quench time with
high accuracy, the ring temperature was monitored exploiting
the well known temperature dependence of the gap voltage
of high-quality Nb/AlOx/Nb JTJs already described in
Ref. 10. After each ring thermal quench the critical current of
the innermost JTJ is automatically stored and an algorithm
has been developed for the counting of the trapped fluxoids.
Finally, all the measurements have been carried out in a mag-
netic and electromagnetically shielded environment. During
the thermal quenches all electrical connections to the heater
as well as to the JTJs were disconnected. While more details
on the measurement setup and on the fabrication process can
be found in Refs. 13 and 14, respectively, an extensive de-
scription of the chip layout, the experimental setup and the
system calibration will be given elsewhere.16

The experimental results shown in Fig. 2 were obtained
using a ring with inner and outer radii, r=30 �m and
R=50 �m, respectively. Similar samples have shown the
same behavior. We note that wider rings prevent fluxoids
from tunneling out of the ring, although their smaller normal
self-inductance Ln makes fluxoid formation energetically

FIG. 1. Sketch of a superconducting loop �black� used as a base
electrode for two gapped Nb/AlOx/Nb annular Josephson tunnel
junctions �whose top electrodes are in gray�. The ring inner and
outer radii are r=30 and R=50 �m, respectively, while the top
electrodes width is 5 �m.
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more unlikely. In our case, the field energy E0=�0
2 /2Ln

associated with a single flux quantum �0 is several orders of
magnitude larger than the thermal energy kBTc /2 at Tc.

17

Magnetostatic numerical simulations implemented in the
COMSOL multiphysics three-dimensional electromagnetics
module showed that, when a single flux quantum is trapped
in such rings, the radial magnetic field induced by the circu-
lating currents at the ring inner border is as large as 1 A/m, a
value easily detectable by the JTJ. For our rings, the number
of trapped fluxoids was small, usually no more than one;
indeed we measured the probability of trapping a single
up-fluxoid �field up� f+1 or a single down-fluxoid f−1.

Figure 2 shows on a log-log plot the measured frequency
f1= f+1+ f−1= �n+1+n−1� /N=n1 /N of single fluxoid trapping,
obtained by quenching the sample N times for each value of
a given quenching time �Q, n1 being the number of times that
one defect or one anti-defect was spontaneously produced. N
ranged between 250 and 300 and n1 was never smaller than
10, except for the rightmost point for which n1=5. The ver-
tical error bars gives the statistical error f1 / �n1. The relative
error bars in �Q amounting to �10% are as large as the dot’s
width. As expected we had n+1	n−1, but slightly larger than
n−1 indicating the presence of a small residual stray field in
our apparatus �see inset of Fig. 2�.

To test Eq. �2�, we have fitted the data with a power-law
function f1=a�Q

−b, with a and b as free fitting parameters. An
instrumentally weighted least-mean-square fit of f1 vs �Q,
represented by the continuous line in Fig. 2, yields a
=0.18�0.02 �taking �Q in ms� and b=0.62�0.15. The large
fit correlation coefficient R2=0.987 indicates that the scaling
behavior is reliably confirmed, however the scaling exponent

b is about two times larger than expected for large loops.
A doubling of the large-loop ZK exponent for small loops

has a possible explanation in the framework of the Gaussian
correlation model introduced in Ref. 12 in which it was as-
sumed that the winding number n�x� is a Gaussian variable
until the transition is complete, whereby all correlation func-
tions are determined by the two-point correlation function
g�x1−x2 ,C�= �n�x1�n�x2��. As a result18

�n2� = �
0

C �
0

C

�n�x1�n�x2��dx1dx2 = 2C�
0

C

g�x,C�dx . �6�

For C�2
̄, we can assume a correlation function of the

form g�x ,C�= ḡ�x /2
̄ ,C /2
̄� / �2
̄�2 so that

f1 	 2
C

2
̄
�

0

C/2
̄

ḡ�x̄,C/2
̄�dx̄ 	 2
 C

2
̄
�2

ḡ�0,C/2
̄�

�7�

provided ḡ�x̄ ,C /2
̄� is analytic at x̄=0. This suggests that
Eq. �4� should be replaced by the scaling behavior

f1 	 �
 C

2
̄
�2

= �
 r

0
�2
 �Q

�0
�−2�

, �8�

with a proportionality constant � of the order of unity. To
buttress this suggestion, it is not difficult to show that, in the
Gaussian approximation, the value of �n2� along a small ring
in a two-dimensional superconductor is proportional to the
area enclosed by the ring.16

This doubling of the scaling exponent in Eq. �8� has the
price of coming with a lower probability, but leaves us with
some freedom with the ZK prefactor. Indeed, the value of the
prefactor a obtained from the best fit of the experimental
data in Fig. 2 is about �=4−5 times larger than the predicted
value �r /0�2��0=0.04 obtained using the values r=30 �m,
0	30 nm, and �0=
� /16kBTc	0.16 ps and taking �Q in
ms. As a bound we only expect agreement in the overall
normalization of the prefactor a to somewhat better than an
order of magnitude, largely confirmed by experiment. We
point out that the dependence of the prefactor a on the ring
width remains to be investigated both theoretically and ex-
perimentally. �We note that if Eq. �3� were true, then �n2�
would be 	0.6, i.e., 20 times larger than the experimental
value for �Q=O�10 ms�, say.

In the opposite case of large circumferences, C�2
̄,

g�x ,C� is controlled by the correlation length ̄ of the wind-
ing number at the time of unfreezing and does not depend on
C, i.e., the effect of periodicity for large rings is small. With

g�x�= ḡ�x /2
̄� / �2
̄�2 on dimensional grounds, we justify
the random walk assumption of Eq. �3�,

�n2� =
C


̄
�

0

C/2
̄

ḡ�z�dz 	
C


̄
�

0

�

ḡ�z�dz = �
C

2
̄
, �9�

with �=O�1�. The dashed line in Fig. 2 is the prediction in
Eq. �9� with � set to 0.7 to fit to the ordinate scale.

In summary, our experiment shows reliable scaling behav-
ior of form �3� for the creation of a single fluxoid, with

FIG. 2. Log-log plot of the measured frequency f1 of trapping
single fluxoid versus the quenching time �Q for a Nb ring having
inner radius r=30 �m, outer radius R=50 �m and thickness d
=200 nm�2�L,Nb. Each point corresponds to hundreds of thermal
cycles. The vertical error bars gives the statistical error, while the
relative error bars in �Q amounting to �10% are as large as the
dots’ width. The solid line is the best fit to an scaling relationship
f1=a�Q

−b which yields a=0.18�0.02 �taking �Q in ms� and b
=0.62�0.15. For comparison purposes, the dashed line is the pre-
diction of Eq. �9� with � �see text� set to 0.7 to fit in ordinate scale.
A similar plot for f+1− f−1 is shown in the inset.
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scaling exponent 0.62�0.15. This is obviously at variance
with extrapolation �4� of Zurek prediction �3� to small rings,
for which we expect �=0.25. We have suggested that it be
given by Eq. �8� with twice the exponent, as a consequence
of the Gaussianity of the Cooper pair field phase �before
truncation by back-reaction�, an assumption supported in a
slightly different context by the behavior of JTJs in an exter-
nal field.12 As Gaussianity permits the instabilities from
which defects form to grow as fast as possible, in general it
gives the same scaling exponents as the ZK scenario for
large systems. With this qualification we see our result as
providing strong support for Zurek-Kibble scaling over a
wide range of quenching time �Q. We stress that this experi-
ment confirms the Zurek-Kibble causality scenario for single
isolated superconducting rings �as distinct from Josephson
junctions�. Further experiments to investigate the transition
to the random walk regime and the effect of the ring width
are planned. For example, a test of Gaussianity is that f1
�0.5 for all values of C.12

Given that the original ZK scenario was posed to demon-
strate the similarity in the role of causality at transitions in
the early universe and in condensed matter systems we have
seen that the finiteness of the latter systems requires careful

disentangling from the underlying principles before we can
draw any quantitative conclusions.

In the same vein we conclude with a speculation concern-
ing the small-annulus JTJ experiments9–12 that, hitherto, have
been the only superconductor experiments to show scaling
behavior. In that case also, the observed exponent was twice
that anticipated from long annuli.8 However, in the case of
JTJs there is an ambiguity in their fabrication that is suffi-
cient to double the exponent, according as the “proximity
effect” enables otherwise subcritical behavior of the Joseph-
son current density to dominate near the transition.10 We had
assumed that this was the reason for the discrepancy. We
shall now re-examine these earlier experiments with the
above analysis in mind.

Note added in proof. It has been brought to our attention
that, for BECs, numerical simulations show that there is a
doubling of the ZK scaling exponent when the winding num-
ber is less than unity. See Ref. 19.
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Aaroe for the help at the initial stage of the experiment.
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