Superconducting Integrated Receiver
(Development and Implementation)

Valery Koshelets, Pavel Dmitriev, Andrey Ermakov, Lyudmila Filippenko,
Andrey Khudchenko, Nickolay Kinev, Oleg Kiselev,
Alexander Sobolev, Mikhail Torgashin,
Kotel’nikov Institute of Radio Engineering and Electronics, Moscow, Russia

in collaboration with
SRON Netherlands Institute for Space Research, the Netherlands
Superconducting Integrated Receiver (SIR) with phase-locked FFO

4 K dewar

SIR chip

SIS mixer

Harmonic mixer

FFO as LO 500-650 GHz

HEMT 4-8 GHz

Reference 20 GHz

IF Processor & Digital Auto Correlator

Computer controlled data acquisition system

Electronics FFO, SIS, HM control

PLL 4 GHz

LSU 400 MHz reference

Optical Input 50-650 GHz

21 September, 2009 Euroflux2009, Avignon
Internal part of the SIR Microcircuit

Double-slot (dipole) twin SIS – 0.8 μm²

HM – 1.0 μm²

Nb-AlOx-Nb, Nb-AlN-NbN; Jc = 5 - 10 kA/cm²

Optionally: SIS – Jc = 8 kA/cm²; FFO + HM = 4 kA/cm²
Nb-AlOx-Nb and Nb-AlN-NbN FFO for SIR

400 GHz

Frequency Tuning

700 GHz

JSC, $V_B = V_g/3$

Nb-AIN-NbN SIS pumped by FFO; FFO frequency tuning

HD13-09#26 (Vg=3.7mV, Rn=21 Ohm)

- FFO Frequency: 0 GHz
- FFO Frequency: 400 GHz
- FFO Frequency: 500 GHz
- FFO Frequency: 600 GHz
- FFO Frequency: 700 GHz
Nb-AlN-NbN SIS pumped by FFO; FFO power tuning (f = 500 GHz)
FL and PL spectra of the Nb-AlN-NbN FFO: frequency 605 GHz; LW = 1.7 MHz; SR = 92%
Phase Noise of the PL FFO

Absolute FFO phase noise, \((n = 20); \) SR = 97.7%
- R&S Synthesizer at 22 GHz \(\times n^2 \) (\(n = 20 \))
- Phase locked FFO, \(f_{\text{FFO}} = 450 \text{ GHz} \) (\(\delta f_{\text{aut}} = 0.5 \text{ MHz}; \) SR = 97.7%)
- R&S Synthesizer at 22 GHz (Specification)

R&S Synthesizer at 22 GHz * \(n^2 \) (\(n = 20 \))

Phase locked FFO, \(f_{\text{FFO}} = 450 \text{ GHz} \) (\(\delta f_{\text{aut}} = 0.5 \text{ MHz}; \) SR = 97.7%)

R&S Synthesizer at 22 GHz (Specification)

21 September, 2009
Development of the Integrated Spectrometer for TELIS

Valery Koshelets, Lyudmila Filippenko, Pavel Dmitriev, Andrey Ermakov, Andrey Khudchenko, Nickolay Kinev, Oleg Kiselev, Alexander Sobolev, Mikhail Torgashin,
Kotel’nikov Institute of Radio Engineering and Electronics, Moscow, Russia

Pavel Yagoubov, Gert de Lange, Hans Golstein, Leo de Jong, Arno de Lange, Bart van Kuik, Ed de Vries, Johaness Dercksen, Ruud Hoogeveen, Avri Seleg
SRON Netherlands Institute for Space Research, the Netherlands

Nopporn Suttiwong, Georg Wagner, Manfred Birk (PI)
Institute for Remote Sensing Technology, DLR, Germany

21 September, 2009 Euroflux2009, Avignon
TELIS (Terahertz Limb Sounder)

TELIS Objectives:

- Measure many species for atmospheric science: ClO, BrO, O$_3$, HCl, HOCl, etc;
- Chemistry, Transport, Climate
- Serve as a test platform for new sensors
- Serve as validation tool for future satellite missions
- Three independent frequency channels, cryogenic heterodyne receivers:
 - 500 GHz by RAL
 - 500-650 GHz by SRON-REE
 - 1.8 THz by DLR (PI)
SIR Mixer Block with Shields
Noise Temperature of the Flight SIR (DSB)

(T4m-093-05f, 17-Dec-2007)

Receiver Noise Temperature (K)

FFO frequency (GHz)

Water line
557 GHz

IF 4-8 GHz
IF = 8 GHz

21 September, 2009
Euroflux2009, Avignon
SIR Noise Temperature on Intermediate Frequency and SIS Bias

(T4m-093-05f, 14-Dec-2007)

Data

YIG-filter's frequency (GHz)

FFO Freq = 601 GHz
FFO Freq = 497 GHz

(T4m-093-05f, 30-Mar-2008)

Receiver Noise Temperature (K)

SIS Bias (mV)

FFO frequency 497 GHz
SIR Stability: Allan variance test

- IF amp
- Power meter
- BP filter
- SIS
- FFO

Graph showing Allan variance test results with different channels.

4K cryostat
- SIS
- RT
- FFO
- IF amp
- Power meter 1
- BP filters
- Power meter 2

21 September, 2009 Euroflux2009, Avignon
Deconvolved spectrum of the OCS emission lines at a gas pressure 2.6 mBar. LO frequency 601 GHz.

Two strong lines are saturated; weaker lines are not saturated isotopes. The lines are detected, one in the LSB, the other one in the USB.
Amplitude and phase APB of the SIR with cold optics

21 September, 2009

Euroflux2009, Avignon
SIR for TELIS – remote operation
TELISTELIS-SIR Main Parameters
(parameters determined by digital correlator are in parentheses)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input frequency range, GHz</td>
<td>500 – 650 ГГц</td>
</tr>
<tr>
<td>Minimum noise temperature in the range (DSB), K</td>
<td>120 К</td>
</tr>
<tr>
<td>Output IF range, GHz</td>
<td>4-8 (5-7) ГГц</td>
</tr>
<tr>
<td>Spectral resolution, MHz</td>
<td>< 1 (2) МГц</td>
</tr>
<tr>
<td>LO frequency net, MHz</td>
<td>< 300 МГц</td>
</tr>
<tr>
<td>Dissipated power at 4.2 K stage, mW</td>
<td>< 30 мВт</td>
</tr>
<tr>
<td>Operation temperature, К</td>
<td>< 4.5 К</td>
</tr>
</tbody>
</table>

21 September, 2009
TELIS (Terahertz Limb Sounder)

TELIS-MIPAS at Esrange, Sweden; March 2009
Balloon size: 400 000 m3; Payload weight: 1 200 kg

21 September, 2009
Euroflux2009, Avignon
Flight trajectory (predicted)

Flight profile (actual)

21 September, 2009

Euroflux2009, Avignon
Frequencies and substances selected for the first TELIS flight

<table>
<thead>
<tr>
<th>##</th>
<th>FFO Frequency, GHz</th>
<th>Substances (High priority)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>495.04</td>
<td>H$_2$$^{-18}$O</td>
</tr>
<tr>
<td>2</td>
<td>496.88</td>
<td>HDO</td>
</tr>
<tr>
<td>3</td>
<td>505.6</td>
<td>BrO ($\Delta T = 0.3$ K !!)</td>
</tr>
<tr>
<td>4</td>
<td>507.28</td>
<td>ClO</td>
</tr>
<tr>
<td>5</td>
<td>515.25</td>
<td>O$_2$ /pointing /pressure</td>
</tr>
<tr>
<td>6</td>
<td>519.25</td>
<td>BrO ($\Delta T = 0.3$ K !!)</td>
</tr>
<tr>
<td>7</td>
<td>607.78</td>
<td>O$_3$ isotopes</td>
</tr>
<tr>
<td>8</td>
<td>619.1</td>
<td>HCl (HOCl, ClO)</td>
</tr>
</tbody>
</table>
Spectra measured at limb-sounding

FFO Freq = 495 GHz

Orbit – 30 km;
Increment – 1.5 km,
Tangent: 10.5 – 30 km
45 degrees up
ClO line over time (FFO = 495 GHz)

Sunrise 5h08

O$_3$, ClO, O$_3$

21 September, 2009 Euroflux2009, Avignon
Back to the Earth…
30-cm POrtable Submillimeter Telescope (POST)
Purple Mountain Observatory; Nanjing.
Site: Delingha of Qinghai province (altitude ~3200 m)

Frequency - 345 GHz
Tr (DSB) < 100 K
Spectral resolution < 1 MHz

2-stage GM type;
cooling capacity – 0.1 W;
compressor – 42 kg;
power consumption - 1.2 kW
ESPRIT – Exploratory Submm Space Radio-Interferometric Telescope

- Telescope sizes ~ 3.5 meter; off-axis
- Number of elements $N = 6$ (15 baselines)
- Projected baselines 200 - 1000 meter
- Frequencies:
 - Spots in the range 0.5 – 6 THz
- Front Ends - (0.5 – 1.5 THz):
 - SIS mixers, multiplier LO / $SIR = FFO + SIS + HM$
 - (1.5 – 6 THz) HEB mixers, QCL as LO
- System temperature < 1000 K
- IF bandwidth > 4 GHz (goal 8 GHz)
“Millimetron” – Russian Space Agency (> 2017)
12 m cryogenic mirror; \(\lambda = 0.01-20 \text{ mm} \).
Medical applications

Non-invasive medical diagnostics based on analysis of exhaled air

- human exhalation contains up to 600 volatile compounds
- some of them can be used as markers of diseases

- **CO** Blood disease, asthma, oxidative stress
- **NO** Diseases of respiratory tract, oncology
- **NH₃** Diseases of gastro-enteric tract, liver, kidney
- **CH₄** Malabsorption of hydrocarbons
- **CS₂** Markers of coronary arteries diseases, schizophrenia
- **H₂O₂** Radiation injury, asthma
Gas Spectra Detection by FFTS

\[\text{NH}_3 \quad - \quad 572.498 \text{ GHz} \]

Transmission

Frequency (GHz)

P = 1 mBar
0.4 mBar
0.1 mBar
0.02 mBar
0.002 mBar

21 September, 2009 Euroflux2009, Avignon
Gas Spectra Detection - 2

PLL + mod. + sweep. → IF processor, Computer

Gunn 112-116 GHz → x5 → gas cell

SIR → SIR control

Intensity (mV)

Frequency (GHz)

-1500 -1000 -500 0 500 1000 1500

572,485 572,490 572,495 572,500 572,505 572,510

NH₃ (p= 5*10⁻³ mbar)

Intensity (mV)

Frequency (GHz)

-150 -100 -50 0 50 100 150

571,110 571,115 571,120 571,125 571,130

OSC (p= 2*10⁻³ mbar)

21 September, 2009

Euroflux2009, Avignon
Conclusion

• Concept of the Phase-locked SIR is developed and proven.
• Nb-AlN-NbN FFOs and SIRs have been successfully implemented.
• New generation of the SIR with PL FFO for TELIS has been developed showing a possibility to achieve all TELIS requirements: Frequency range 500 – 650 GHz; Noise temperature < 150 K; IF bandwidth 4 - 8 GHz; Spectral resolution better 1 MHz; Beam Pattern - FWHM = 3 deg, with sidelobes < - 17 dB.
• Procedure for remote SIR operation has been developed and experimentally proven.
• TELIS flight has been completed in March 2009 (Kiruna, Sweden).
• Future space and ground-base missions are under consideration.
• SIR Technology is mature enough for both future space missions and non-invasive medical diagnostic.