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If superconductors change as fast as possible as they pass through a phase transition,
then the initial domain structure is constrained by causality. We shall see that Josephson
junctions do indeed display such behaviour. However, we shall argue that causal bounds
arise through the Gaussian nature of the order parameter, which can be thought of as a
consequence of instabilities growing as fast as possible.
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1. Introduction: causality and scaling behaviour

The Kibble–Zurek (KZ) scenario for continuous phase transitions proposes that
transitions take effect as fast as possible, i.e. the domain structure initially
matches causal horizons. Since causality is ubiquitous, this proposition, if true,
would apply equally to both the early Universe and laboratory-based condensed
matter systems.

Causality necessarily leads to a ‘domain’ structure owing to the inability of a
field to order itself instantaneously (Kibble 1976). To take this further, Kibble
(1980) and Zurek (1985, 1996) made two assumptions for continuous transitions,
for which the adiabatic correlation length xad(T ) diverges at the critical
temperature Tc. In reality, correlation lengths cannot become infinite because
there is a maximum speed at which the field can order itself. The first assumption
is that the maximum value that the physical correlation length x can take is
�xZxadðTð�t ÞÞ for some appropriate time �t, most simply that at which the rate of
change of xad(T(t)) is as fast as causality permits.
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Figure 1. An idealized AJTJ. The flux passing through the oxide layer that surrounds a
superconducting electrode will be trapped below Tc.
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Whether �x is observable directly, or not, depends on the nature of the frustration
of the order parameter as it moves from one ground state to the next. In cases of
interest, the order parameters cannot ‘untwist’ at these domain boundaries owing
to conserved topological charges. The second KZ assumption is that if the
symmetry breaking in the transition permits such defects, then �x is their separation
at the time of their production, which can be checked experimentally.

With T(tZ0)ZTc, the quench time (inverse quench rate) tQ is defined by
tQZKTc= _Tð0Þ, where the dot denotes differentiation with respect to time. The

KZ assumptions
j _xðTð�t ÞÞjzcðTð�t ÞÞ; �xzxðTð�t ÞÞ ð1:1Þ

lead to a scaling behaviour with tQ for �x of the form

�xzx0ðtQ=t0Þs: ð1:2Þ

The scaling exponent s in (1.2) depends only on the equilibrium critical indices of
the system, whereas the parameters x0 and t0 have to be determined from the
characteristics of the particular sample being tested. In this way, the universality
classes of adiabatic systems become the universality classes of strongly non-
equilibrium systems.

Superconductors seem to be the natural candidates to test (1.2) directly, since
they have vortices (e.g. Abrikosov vortices) as topological defects. However, the
scaling behaviour of (1.2), based on the density of Cooper pairs, is too simple (Zurek
1996). There is a further mechanism (Hindmarsh & Rajantie 2000) for producing
spontaneous flux, in which the long-wavelength modes of the magnetic field will fall
out of equilibrium at the quench. This additional flux does not satisfy (1.2). It is to
avoid this problem that we have chosen to work with annular Josephson tunnel
junctions (AJTJs), for which the topological charge is the magnetic flux carried by
a vortex ‘fluxon’ in the plane of the oxide layer between the two superconductors
that make up the Josephson tunnel junction (JTJ). The angle subtended by the
oxide is so small that there is no additional flux to concern us.

An idealized AJTJ consisting of two electrodes made from identical
superconductors is shown in figure 1. Above Tc, the magnetic flux lines arising
from the fluctuations of the electromagnetic field can pass easily through the (now)
conducting electrodes. On cooling through Tc, those flux lines that pass through the
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2873Quenching Josephson junctions
oxide layer but circle a superconductor (and are thereby expelled from it) are
trapped in the oxide. The total flux is conserved. It can be measured at any time
after the quench, and its dependence on quench time tQ can be determined.

The effective order parameter field of the bulk superconductors is JZr1=2eif,
where r is the density of Cooper pairs. If x is the (periodic) coordinate along the
ring, we assume continuity in r across the oxide, but allow for a discontinuity
fðxÞZfCðxÞKfKðxÞ in phase. The Cooper pair tunnelling current through the
oxide gives a transverse current JZJc sin f(x), the Josephson current.

To a good approximation, this Anderson plasma mode f(x) satisfies the sine-
Gordon equation (Barone & Paterno 1982)

1

�c2
v2f

vt2
K

v2f

vx2
C

1

l2J
sin fZ 0: ð1:3Þ

In (1.3), the speed of propagation of the plasma excitations is the Swihart velocity
�c, effectively the speed of light in the oxide layer. The Josephson coherence length
of the plasma modes is lJfJ

K1=2
c . On quenching the system through Tc, the field

finds itself in one of the many degenerate ground states fZ2pn (integer n). If we
follow the phase around the inner boundary of the junction we shall find ‘kinks’ in f
where it changes value by G2p over a length O(lJ). When this happens, the
Josephson current changes its direction, showing the presence of a unit of magnetic
flux leaving the oxide layer. This is a Josephson fluxon.

With the Swihart velocity to set causal horizons and the Josephson coherence
length to characterize the separation of fluxons, we can apply the KZ scenario
directly to determine the initial, and hence final, fluxon probability. In practice,
it is most convenient to consider quenches of a small junction of perimeter C (the
interior circumference of figure 1), with �xOC . If f1 and fK1 are the probabilities
of seeing a single fluxon or antifluxon, respectively, then we expect scaling
behaviour of the form

�f 1 Z f1 C fK1zC=�xZ ðC=x0ÞðtQ=t0ÞKs!1; ð1:4Þ
provided �f 1 is sufficiently smaller than unity.

The exponent s depends on the details of the fabrication of the JTJs. Ours are
based on Nb, a strong-coupling superconductor. In practice, high-quality barriers
are achieved by depositing a thin Al overlay onto the Nb base electrode which
will be only partially oxidized, leaving an Nb–Al bilayer underneath having a
non-Bardeen–Cooper–Schrieffer temperature dependence of the energy gap and
of the density of states. This ‘proximity effect’ leads to the coherence length
diverging near Tc as xðTÞZlJðTÞzx0ð1KT=TcÞK1zx0tQ=t in the vicinity of Tc

(tO0; Golubov et al. 1995).
For long ideal JTJs, the Swihart velocity vanishes at Tc, whereas for realistic

JTJs it just becomes very small. As a result, we assume �cðtÞZ�cnn near the
transition temperature where �cnn is the speed of the light in a microstrip line
made of normal metals. We still have approximate critical slowing down insofar
as �cnn is much smaller than the zero-temperature Swihart velocity. Solving the
causality equation (1.1) with a non-vanishing Swihart velocity yields �tZ

ffiffiffiffiffiffiffiffiffiffi
t0tQ

p
,

where t0Zx0=�cnn (t0ZO(1 ns)), whence

�xZ x0ðtQ=t0Þ1=2: ð1:5Þ
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Figure 2. Log–log plot of the frequency of trapping single fluxons �f 1 versus quench time tQ for
AJTJs of circumferences 0.5 (circles) and 1.5 mm (squares). The best fits through the data (solid
and dashed lines) are for sZ0.5.
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That is, the probability �f 1 for spontaneously producing one fluxon (or antifluxon)
in the quench is predicted to scale with the quench time tQ with scaling exponent
sZ0.5. (This is in contrast to weak-coupling junctions with complete critical
slowing down, which give sZ0.25 (Kavoussanaki et al. 2000).)

Several experiments have now been performed by us, which show this scaling
behaviour (Monaco et al. 2002, 2003, 2006a,b). In figure 2, we show some results
from the most recent, which show scaling with an exponent sZ0.5 to high
accuracy within errors for annuli with circumferences of 0.5 and 1.5 mm.

These data look like a striking confirmation of the effects of causality on the
evolution of phase transitions. However, the picture is rather more subtle than
the simplest KZ scenario suggests. In particular, it is also necessary to
understand fluxon production in the presence of an external magnetic field, i.e.
explicit symmetry breaking.
2. Fluxon production in an external magnetic field

In the experiments of figure 2, considerable attention has been paid to the shielding
of the junction against stray magnetic fields. Nonetheless, we still cannot preclude
the possibility of stray magnetic fields in the experimental equipment.

In fact, in presenting the data in figure 2 we have taken the effects of static
stray fields empirically into account, by applying an external magnetic field B
perpendicular to the junction plane until such stray fields as may be present are
neutralized. This choice of field orientation is sufficient because a transverse field
is more effective in modulating the junction critical current than an in-plane
field, by almost two orders of magnitude.

As an example, consider an AJTJ with circumference CZ0.5 mm quenched at
tQZ5 s, for which dependence of the single fluxon trapping frequency �f 1 on an
external field is shown in figure 3. Unsurprisingly, applying an external field in
either direction makes the creation of a single fluxon more likely, leading to a
double peak. If there is no stray field, then the central minimum occurs at BZ0.
Phil. Trans. R. Soc. A (2008)
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Figure 3. Dependence of the single fluxon trapping frequency �f 1 on quench time tQZ5 s for an
AJTJ of circumference CZ0.5 mm in the presence of a magnetic field B perpendicular to the
barrier plane. The error bars denote the statistical error from multiple thermal cycles (up to 300
per data point). The dotted line is a guide to the eye. The solid line does not correspond to a best fit
near the minimum but follows from (3.4) for appropriate efficiency e.
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Figure 4. Dependence of �f 1 on quench time tQZ5 s for an AJTJ of circumference CZ2.0 mm in the
presence of a magnetic field B perpendicular to the barrier plane. The error bars denote the
statistical error from multiple thermal cycles (up to 300 per data point). The dotted line is a guide
to the eye. The solid line follows from (3.4) for appropriate efficiency e.
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On other occasions (different tQ) it is displaced, showing the presence of a stray
field. We generate a dataset of the form of figure 3 to create each data point in
figure 2, whose values of �f 1 correspond to the values at the central minima.

However, the situation is much less clear when we look at the likelihood of
finding a single (anti)fluxon in larger AJTJs in the presence of an external field.
Figure 4 shows the results for a 2.0 mm long sample with the same Jc at the same
quench time (tQZ5 s) as that of figure 3. Rather than the double peak of figure 3,
we have only a central peak that looks counter-intuitive in that it does not
permit scaling behaviour for �f 1.
Phil. Trans. R. Soc. A (2008)
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In the remainder of this paper, we shall show how the results of figures 3 and 4
can be understood, and qualitatively predicted, in a framework that implies the
scaling behaviour of figure 1. What follows is based on the results presented in
our most recent paper (Monaco et al. 2008).
3. Gaussian probabilities and Gaussian correlations

There is another approach to the same scaling behaviour of (1.2) which is less
obvious, but still commensurate with the notion of maximal rate of change. This
is that the scaling behaviour is at least as much a reflection of the order
parameter field being a predominantly Gaussian random variable as it is a simple
consequence of causality. It has been realized for many years that assuming
Gaussian correlations will lead to the KZ scaling laws of (1.2), without having to
cite causality directly (Karra & Rivers 1997, 1998; Lythe & Moro 1999).

The reason is that second-order transitions are, in general, implemented
through the exponential growth of the amplitudes of the unstable long-
wavelength modes that control the field ordering. If this growth is fast enough,
then the most important physics takes place before nonlinearities become
important. For these untramelled Gaussian modes, this growth is controlled by
the relevant causal speed and reflects the bounds of causality which its equations
satisfy. Nonlinearities serve only to put a rapid brake on the system’s evolution,
leaving the Gaussian imprint intact.

However, it has to be said that, whereas the role of instabilities is well
understood for single superconductors (Calcetta & Ibaceta 1999), we do not have
a comparable understanding for JTJs. Nonetheless, however instabilities induce
Gaussian correlations, we shall see that to assume such correlations provides a
good characterization of the data of figures 3 and 4.

To understand how this happens, we first need to extend the prediction for �f 1
of (1.4), valid only for C!�x, across the whole range of C=�x. Initially, suppose
that there is no external symmetry-breaking field. The Kibble mechanism
suggests that a first guess as to how �f 1 behaves for C[�x is to divide the annulus
into NwC=�xR2 domains of size comparable to �x, in each of which the
Josephson phase f is a constant. We assume that there is no correlation between
the values of f in adjacent domains but, in calculating the total phase change Df
around the annulus, the shortest path in the phase (geodesic rule) will be taken
when jumping from one domain to the next.

Let GN(Df) be the probability that the change in phase f is Df after N domain
boundaries, with G1(Df)Z1/2p for jDfj!p, zero otherwise. On increasing N,
GN(Df), which is determined by NK1 self-convolutions of G1, shows rapid
convergence to the Gaussian distribution that arises from the central limit
theorem, already good at NZ2.

For N not too small, the obvious way to proceed is to adopt this Gaussian
distribution. That is, we assume that the total phase change Df around the annulus
can be expressed as the sum of a random term f and a geodesic-rule correction df.
If f has a normal distribution with average �fZ0 and variance s2(N ), i.e.

GN ðfÞZ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2ðNÞ
p expK

f2

2s2ðNÞ

� �
; ð3:1Þ
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then a simple calculation enables us to identify (3.1) with the central limit
distribution of the self-convolutions of G1, as described above, provided
s2ðNÞZNp2=3. The probability to trap a net number m of defects will now be

fmðNÞZ
ðpC2mp

KpC2mp

dF GN ðfÞ: ð3:2Þ

However, equation (3.2) does not give the required linear behaviour in C=�x for �f 1 of
(1.4) when continued to small N, when the approximation breaks down.

To recover this linear behaviour, we recall our earlier comments and assume,
instead, that the winding number (fluxon) density nðxÞZvxfðxÞ=2p is a
Gaussian random variable. We now find that, instead of (3.2),

f1ðNÞZ fK1ðNÞz 1

2p

ðp
Kp

dz expðKz2sðNÞ2=8p2Þcos z: ð3:3Þ

For large N, �f 1 from (3.3) is identical to that obtained from (3.2), while giving the
required linear behaviour for small N.

In fact, although Gaussian probabilities follow from the Kibble mechanism and
Gaussian correlations from the growth of linear instabilities, the two methods
match remarkably well across the whole N range, apart from very small N, as do
the expressions for f0, the probability of seeing no fluxons. (Unfortunately, the
periodicity of the ring makes it difficult to find an analytic approximation for fm
with Gaussian correlations when mO1.)

Let us now apply a perpendicular uniform magnetic field B to the ring. Once
superconducting, the AJTJ expels most of the magnetic field, but a small fraction
e(B) of the applied field ‘leaks’ in the radial direction through the barrier.
The effect of this field is to produce a non-zero average winding number
hniZ �nðBÞ. For an AJTJ, the field that penetrates the barrier will be given
by the difference of the magnetic fluxes through the upper and lower rings
�fðBÞZ2p�nðBÞfeðBÞC2B.

In the presence of external fields, we are not primarily interested in the small
N linear regime and it is sufficient to work with Gaussian probabilities, rather
than the almost identical Gaussian correlations. The natural extension of G(f) of
(3.1) for an AJTJ in a perpendicular magnetic field B is that the phase
distribution will still be normal with variance s2ðN ; �nðBÞÞ, where we retain the
definition of NwC=�x given earlier, but with non-zero average �fðBÞZ2p�nðBÞ.
Using a mixed notation,

GN ;�nðfÞZ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2ðNÞ
p expK

ðfK �fðBÞÞ2

2s2ðNÞ : ð3:4Þ

As before, we are primarily interested in the probability of seeing a single fluxon
or antifluxon, but now for fixed tQ (or N ), as a function of B (or �n). With
f�nKmð�nÞZ f�nCmð�nÞZ fGmð0Þ, we repeat the identification s2ðNÞ=4p2ZN=12. Now
fC1ð�nÞsfK1ð�nÞ. More precisely, in figure 5 we show �f 1ðN ; �nÞ as a function of �n for
fixed N for several N, as derived from Gaussian distribution equation (3.4).

The main characteristics of figure 5 are the following.

—For N!Ncz10 there is a double peak. This is understood as follows:
essentially, when, for a given field B we have �nZ1, the zero-field no-trapping
frequency f0(0) becomes the single fluxon trapping fC1ð1ÞZ f0ð0Þ, giving the
right-hand peak for positive �nz1; reversing the field, fK1ðK1ÞZ f0ð0Þ and we
Phil. Trans. R. Soc. A (2008)
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Figure 5. The values of �f 1ðN ; �nÞ as a function of �n for fixed N for several values of N, NZ1, 2, 4, 6,
8, 10 and 16, according to equation (3.4).
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get the peak for negative �nzK1. The minimum value of �f 1 between the peaks
is �f 1ðNÞ, as given by (1.2).

—As N increases to Nc the height drops, the variance increases and the two
peaks in �n of �f 1ðN ; �nÞ merge at NZNc at the value �f cz0:5. This same Nc is the
value of N for which �f 1ðNÞ, the probability of seeing a fluxon or antifluxon
with no external field, is maximized. The reason why the probability of seeing
a single fluxon decreases for large N as N increases is a consequence of an
increased ability to create more than one fluxon, making (1.4) inappropriate,
with C=�xO1.

—AsN increases beyondNc, there is only a single peak centred on �nZ0. Similarly,
the reasonwhy the probability of seeing a single fluxon decreases for largeN as jBj
increases is also the consequence of it being easier to create more than one fluxon.

For appropriate e, the curves in figure 5 for NZ1 and 20 bear strong
resemblance to the experimental data shown in figures 3 and 4, respectively.
They comply with the most simple quantitative test of our analysis that the
double peaks in figure 3 occur at a higher frequency than �f cz50%, and the single
peak in figure 4 at a lower frequency than 50%. More specifically, we note that
the 2.0 mm long sample should be 16 times more sensitive to the externally
applied magnetic field B if e(B) is independent of B and identical for both
samples. There is, indeed, a strong difference in sensitivity, but only by a factor
of 7–8, showing that these assumptions are approximate. Further, the efficiency
factor relating N to C has to vary by a factor of 5 between the samples. To fit the
data profiles better we need specific properties of JTJs, beyond the generics of
Gaussianity. This can be done (Martucciello & Monaco 1996), but it only adds
unnecessary complexity at the level of discussion here.
4. Conclusions

We have argued that, in trying to understand the role of causality in transitions,
the scaling behaviour of (1.2) is not the whole picture. Rather, we suggest that
causal bounds arise through the order parameter (winding number density) being
Phil. Trans. R. Soc. A (2008)



2879Quenching Josephson junctions
a Gaussian random variable, which can be thought of as a consequence of
instabilities growing as fast as possible.

In doing so, we have distinguished Gaussian probabilities that follow from the
Kibble mechanism from the Gaussian correlations that follow from the Gaussian
nature of the order parameter. The two are effectively identical where both are
applicable, but only the latter leads to the scaling behaviour (1.4).

However, when describing defect formation in the presence of an external field,
we can use either. The Gaussian approximation provides a better than
qualitative explanation for fluxon production in an external field, as we pass

from the regime of figure 3 with C=�x!1, in which applying an external field leads
to a greater likelihood of seeing an individual fluxon, to that of figure 4, in which
the scaling law (1.4) is invalid because C=�xO1.

We thank Arttu Rajantie of Imperial College for his helpful discussions.
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