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We report on the spontaneous production of fluxons in annular Josephson tunnel junctions during a thermal
quench in the presence of a symmetry-breaking magnetic field. The dependence on field intensity B of the

probability f̄1 to trap a single defect during the N-S phase transition depends drastically on the sample
circumferences. We show that this can be understood in the framework of the same picture of spontaneous

defect formation that leads to the experimentally well attested scaling behavior of f̄1 with quench rate in the
absence of an external field.
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I. SPONTANEOUS FLUXON PRODUCTION IN AN
EXTERNAL FIELD

Some time ago, it was proposed by Kibble1 and Zurek2,3

that the domain structure after a continuous phase transition
is determined by its causal horizons. Since then, there has
been a sequence of experiments in condensed matter systems
to attempt to confirm this by counting the topological defects
produced at a quench, whose number can be correlated to
phase boundaries. Such confirmation lies in the predicted

scaling behavior of the average defect separation �̄ at the
time of their production as a function of the quench time
�inverse quench rate at the critical temperature Tc� �Q. Sup-
posing that the “equilibrium” correlation length �eq�T� of the
order-parameter field and its relaxation time ��T� diverge at
T=Tc as

�eq�T� = �0�1 −
T

Tc
�−�

, ��T� = �0�1 −
T

Tc
�−�

,

simple causal arguments predict behavior of the form1–3

�̄ � �0��Q/�0��, �1�

where the scaling exponent ��0 belongs to universality
classes determined by the �adiabatic� critical exponents � and
�, and �, �, �0, and �0 depend on the detailed microscopic
behavior of the system. The coefficient of proportionality in
Eq. �1� is an efficiency factor which varies with the system,
from a few percent for high temperature superconductors4,5

to full efficiency for superfluid 3He.6,7

In the past several years, we have performed a set of
experiments8–11 on planar annular Josephson tunnel junctions
�JTJs� to test the scaling law �1�. Specifically, a planar Jo-

sephson junction comprises two superconducting films sepa-
rated by an insulating oxide layer. We assume continuity in
the density of Cooper pairs across the oxide, but allow for a
discontinuity 	 in the phase of the effective order-parameter
field. Once the transition is completed, the lossless Joseph-
son current density is J=Jc sin 	, for critical current density
Jc. For JTJs, the defects are fluxons �or antifluxons� corre-
sponding to a change 
	= �2n� in 	 along the oxide
layer.12 The integer �n is the so-called winding number. The
Swihart velocity provides the requisite causal horizons.13

Most simply, for small annuli of circumference C�̄, the
trapping probability f1 for finding a fluxon �or f−1 of finding
an antifluxon� is taken to be

f1 = f−1 = C/�̄ � �C/�0���Q/�0�−�. �2�

In our experiments, we measure f̄1= f1+ f−1, the likelihood
of seeing one fluxon or antifluxon. We have carried out sta-

tistical measurements to determine the dependence of f̄1 on
�Q for a large number of high quality annular Josephson
tunnel junctions �AJTJs� with circumferences varying from
0.5 mm to 3.14 mm. All samples had equal critical current
density Jc�T=0��60 A /cm2 �corresponding to a Josephson
penetration depth �J�T=0��50 �m�, yielding the same �0

and �0. The quenching time �Q could be changed over several
orders of magnitudes from tens of milliseconds to tens of
seconds, using the methods described in Refs. 10 and 11.

In Fig. 1, we show f̄1��Q� for annuli of radii, 0.5 mm
�lower plot� and 1.5 mm �upper plot�. The results for the
larger annulus have not been shown before. There is no

doubt that, for small C / �̄, the probability f̄1 of finding a
single fluxon shows scaling behavior of the type �2�, with
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�=0.5 to high accuracy; some of whose details were given in
Refs. 10 and 11. This value of � is as we would expect for
realistic junctions for which the fabrication leads to a prox-
imity effect14,15 and for which the Swihart velocity does not
show complete slowing down. The efficiency factor is ap-
proximately unity for the smaller annulus. More details are
given in Ref. 11.

What concerns us in this paper is how fluxons form in the
presence of an externally applied magnetic field B that ex-
plicitly breaks the symmetry of the theory, whereby f1� f−1.
This is a crucial ingredient in the analysis of unbiased fluxon
production in JTJs because, despite our best efforts, we can-
not preclude the possibility of stray magnetic fields in the
experimental equipment �e.g., a magnetized screw or an in-
complete shielding of earth’s magnetic field�. In fact, in pre-
senting the data in Fig. 1, we have taken the effects of static
stray fields empirically into account, by applying an external
field until such stray fields are neutralized. It is only then that
we obtain Eq. �2�. In all cases, the external magnetic field B
was applied perpendicular to the junction plane. This choice
of field orientation is mainly due to the fact that a transverse
field �due to demagnetization effects� is more effective, by
almost two orders of magnitude, than an in-plane field in
modulating the junction critical current Ic �Ref. 16� and trap-
ping frequency. Furthermore, under particular conditions,17 a
transverse magnetic field allows to discriminate between
fluxons and antifluxons.

As a result, we have built up a substantial collection of

data showing the dependence of f̄1 on both � and B, which
we shall discuss in the remaining sections. In particular, we
shall concentrate on two representative data sets that refer to
high quality Nb /Alox /Nb-Nb AJTJs quenched at the same
quench rate ��Q=5 s�, but having different circumferences,
i.e., C=0.5 mm and C=2.0 mm, shown in Figs. 2 and 3,
respectively. Details of the samples’ electrical and geometri-
cal parameters and of the experimental setup can be found in
Ref. 11.

We observe that the increase in circumference has a dra-

matic effect on the single trapping frequency f̄1. For the
0.5 mm long AJTJ, we find a central minimum with two side

peaks. Such a double-peaked data set has been used for any
single data point in Fig. 1, with f̄1 being read off from the
central minimum, typically displaced slightly from B=0 be-
cause of the aforementioned stray fields in the equipment
�typically several tens of nT�.

On the other hand, for the 2.0 mm long sample �not rep-
resented in Fig. 1�, we only have a central peak. Superfi-
cially, this is strange, since it shows that the probability of
seeing a single fluxon decreases as the external field in-
creases, but we shall understand this as a consequence of an
increased ability to create more than one fluxon. We note that

the values of the magnetic field required to change f̄1 signifi-
cantly are very small when compared to the field values
needed to modulate the Josephson current Ic of the samples,
whose first minimum occurs at field values of several �T.
Further, the larger the ring size the larger is the effect of a
given magnetic field.

In the remainder of this paper, we shall show how the
results of Figs. 2 and 3 can be understood, and qualitatively

FIG. 1. �Color online� Log-log plot of the frequency f̄1 of trap-
ping single fluxons versus the quenching time �Q for an AJTJ of
circumference 0.5 mm �closed circles� and for an AJTJ with cir-
cumference 1.5 mm �closed squares�. The best fits through the data
�solid and dashed lines� show that scaling with �=0.5 is totally
robust. Both samples had equal critical current density Jc.
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FIG. 2. �Color online� Dependence of the single fluxon trapping

frequency f̄1 for quench time �Q=5 s for an AJTJ of circumference
C=0.5 mm in the presence of a magnetic field B perpendicular to
the barrier plane. The solid line corresponds to the case N=1 in

f̄1�N , n̄� of Fig. 5, as derived from Eq. �22�.
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FIG. 3. �Color online� Dependence of f̄1 for quench time �Q

=5 s for an AJTJ of circumference C=2.0 mm in the presence of a
magnetic field B perpendicular to the barrier plane. The solid line

corresponds to the case N=16 in f̄1�N , n̄� of Fig. 5, as derived from
Eq. �22�.
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predicted, in a framework that implies the scaling behavior
of Fig. 1. As such, these results are mutually supportive but
require an alternative formulation of the Kibble-Zurek �KZ�
scenario, which we now provide.

II. CAUSALITY VERSUS INSTABILITY

At first sight, the results for fluxon production in an ex-
ternal field have little or nothing to do with the Kibble-Zurek
scenario. However, the original scenario of bounding do-
mains by causal horizons is just one way of saying that,
qualitatively, systems change as fast as is possible. From a
different viewpoint, we know that continuous transitions
�like the one here� proceed by the exponential growth of the
amplitudes of unstable long-wavelength modes of the sys-
tem. This growth is strongly suppressed by self-interaction
once the system is close to the ground states of its symmetry-
broken phase.

Exponential growth is as fast as it gets, corresponding to
linearizing the equations of motion. Thus, provided there is
enough time for such rapid growth before back reaction
�self-interaction� stops it, we can understand how systems
can change as fast as is possible without invoking causal
horizons directly. There is a corollary to this. The linear be-
havior of the order-parameter fields, while the transition is
taking place, follows from their behaving as Gaussian ran-
dom variables. In fact, for an idealized situation in which
amplitude growth is stopped by implementing a rapid back
reaction that chokes off growth instantaneously, it can be
shown18–20 that the assumption of Gaussianity leads to scal-
ing behaviour like that of Eq. �1�, with the same values of �
as would be obtained from causal bounds. What may seem
surprising is that, even when back reaction is included more
realistically, numerical simulations21–23 show that the behav-
ior is still essentially the same. The � exponents of causal
reasoning are recovered. There are, however, two major dif-
ferences between fastest amplitude growth and causal
bounds. The growth starts after the transition has begun,
whereas causal bounds can be imposed both before or after
the transition has begun, usually to the same effect.2,3 Nu-
merical simulations show,22,23 without a doubt, that it is the
behavior of the system after the transition has begun that
determines the domain structure. This is necessary in our
context since, with no Josephson effect for T�Tc, we could
not have invoked causality before the transition. Further, the
assumption of Gaussianity gives us more than causality, in
that it reintroduces the role of the Ginsburg temperature, at
which thermal fluctuations become important, where appro-
priate. This provides one natural explanation for the failure
to observe vortices in quenches of 4He,19 while, by a similar
argument, permitting spontaneous vortex production in 3He
�Refs. 6 and 7� and superconductors.5

However, since equations of motion are, by construction,
causal, these viewpoints are largely complementary once
these caveats are taken into account. When appropriate, we
will invoke both mechanisms in our subsequent discussion.

The simulations cited above are largely for systems with
global symmetry breaking, simpler than superconductors. In
fact, although local breaking gives a very different domain

structure, the idea of the transition being driven by instabili-
ties survives. Again, the exponents are those of causal
arguments24 except that there is an additional mechanism25

for the spontaneous production of flux in which magnetic
field just freezes in by itself, with behavior very different to
that of Eq. �1�. For annular JTJs, this further mechanism does
not arise because of the thinness of the oxide layer through
which fluxons protrude and the scaling behavior of Eqs. �1�
and �2� is a clean prediction.

III. BEYOND THE LINEAR REGIME „B=0…

Suppose that there is no external symmetry-breaking field.
As long as f1 is significantly smaller than unity, we expect
the linear log plot in �Q, as seen in Fig. 1. However, with f1
bounded by unity, the linear behavior will soon break down

for increasingly fast quenches. Once �̄=O�C�, the trapping
probability fm of finding net fluxon number m �fluxons minus
antifluxons� increases for m�1, forcing f1 to decrease. For
the remainder of this section, we shall extend Eq. �2� to
predictions for f1 and higher fm across the whole range of

C / �̄.
Since the KZ scenario is appropriate for B=0, this is an

ideal testing ground for our two approaches. We shall elabo-
rate on these in turn and see that, for many purposes, they
give almost indistinguishable results.

A. Independent domains and Gaussian probabilities

In the spirit of the KZ scenario, a simple but informative
first guess as to how f1 and other fm behave across the whole

range of C / �̄ is to divide the annulus into N�2 independent
�causal� domains in each of which the Josephson phase 	 is
a constant. We assume that there is no correlation between
the values of 	 in adjacent domains but, in calculating the
total phase change 
	 around the annulus, the geodesic rule
is adopted.26 This means that, when jumping from one do-
main to the other, the shortest path in phase will be taken.
The result of a quench is then modeled as having the system
divided up into N domains, each with a randomly chosen
phase. There is nothing in this ansatz peculiar to JTJs, and it
is equally applicable to superconductors. As such, it is an
idealization of a superconducting loop, made out of Joseph-
son junctions in series, that has been the object of spontane-
ous flux generation.4

Let GM�
	� be the probability that the change in phase 	
is 
	 after M domain boundaries. If the system is made of
only two domains, then the lack of phase correlation requires

G1�
	� =
1

2�
for − � � 
	 � � ,

=0 for �
	� � � .

In fact, the approach of using the KZ picture to set up dis-
crete domains in which the order-parameter field can take
random values is one that has been used repeatedly for
counting defects, at least since its introduction by Vachaspati
and Vilenkin27 for counting cosmic strings �vortices� in the
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early universe. This adopts an earlier use of causal horizons
by Kibble,28 from which Ref. 1 evolved.

On increasing N, GN�
	� is determined by N−1 self-
convolutions of G1:

GN = G1 * . . . * G1

N−1 times

.

Applying the geodesic rule for the final step in phase �from
domain N back to domain 1�, the probability of ending with
a phase shift of 2�m �i.e., net fluxon number m� is

fm�N� = �
−�+2m�

�+2m�

d�GN��� = 2�GN+1�2m�� , �3�

where the last equality comes from the definition of GN.
To bring this further into correspondence with the KZ

scenario, we should identify the domain size as comparable

to C / �̄, i.e., C=aN�̄, where a=O�1�. The value of a is not
unity, since a discrete domain structure is only a crude ap-
proximation to a continuous phase at a continuous transition.
Further, the result �1� assumes that the causal bound is satu-
rated, and we have already commented on systems �e.g.,
high-Tc superconductors� for which the inefficiency of pro-
ducing flux shows that this is not the case.5 To take general

values of C and �̄ into account, we need to generalize Eq. �3�
to noninteger N.

GN�
	� already shows rapid convergence to the Gaussian
distribution that arises from the central limit theorem for N
�2. For such N, the obvious way to proceed is to adopt this
central limit Gaussian distribution. That is, we assume that
the total phase change 
	 around the annulus can be ex-
pressed as the sum of a random term � and a geodesic-rule
correction ��. If � has a normal distribution with average

�̄=0 and variance �2�N�, i.e.,

GN��� =
1

	2��2�N�
exp − 
 �2

2�2�N�� , �4�

then a simple calculation enables us to identify Eq. �4� with
the central limit distribution of the self-convolutions of G1,
as described above, provided that

�2�N� = N�2/3.

The probability to trap a net number m of defects will now
be

fm�N� = �
−�+2m�

�+2m�

d�GN��� . �5�

Experimentally, in the absence of any external field, the
most important probabilities are for finding one fluxon or one
antifluxon. The frequency of no trapping f0�N� is

f0�N� = �
−�

�

GN���d� = erf
 �

	2�2�N�
� , �6�

and

f�1�N� = �
�

3� d�

	2��2�N�
exp − 
 �2

2�2�N�� . �7�

Furthermore, for large �2�
�2

2 , say, �2�20, the trapping fre-
quencies asymptotically approach zero as

f�m�N� �	 2�

�2�N�
exp − 
2�2m2

�2�N�
� . �8�

Finally, in the same limit, the variance of the discrete vari-
able n is

�n
2�N� = �n=−�

� n2fn�N� = n2� = �2�N�/4�2. �9�

For N�2, we require a different approach and turn to the
consequences of assuming Gaussian stochastic behavior.

B. Gaussian correlations

If x measures distance along the annulus, 	�x� is periodic
�mod 2��. The fluxon number density �or winding number
density� is

n�x� =
1

2�
�x	�x� , �10�

whereby the net fluxon number n is

n = �
0

C

dxn�x� =
1

2�

	 , �11�

where 
	 is the change in 	.
For winding number density n�x�, the ensemble average

of the net number of fluxons along an annulus of perimeter
C, in the absence of an external field, is n̄= n�=0.

We do not need to adopt any particular form for n�x�. In
the light of our earlier discussion, we now assume that it is a
Gaussian variable until the transition is complete, whereby
all correlation functions are determined by the two-point cor-
relation function n�x�n�y��. That is, all we shall need for
probabilities is

n2� = �
0

C

dxdyn�x�n�y�� .

It follows that

n2p� =
�2p − 1�!

2p−1�p − 1�!
n2�p. �12�

If fm is the probability of finding net winding number m
taking both positive and negative values, then

n2p� = �
−�

�

m2pfm. �13�

In order to invert Eq. �13�, we construct the generating func-
tion Z�z�

Z�z� = �
p=0

�
�− z2�p

�2p�!
n2p� = exp�− z2n2�/2� ,

from Eq. �12�. On the other hand, from Eq. �13�,
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Z�z� = �
p=0

�
�− z2�p

�2p�! �
−�

�

m2pfm = �
−�

�

fm cos mz .

That is, the fm are the Fourier coefficients of the Gaussian. In
particular,

f0 =
1

2�
�

−�

�

dz exp�− z2n2�/2� �14�

and

f�1 =
1

2�
�

−�

�

dz exp�− z2n2�/2�cos z ,

respectively.
We observe that, for large n2�, where we can take the

integration limits to infinity, the trapping probability falls off
as

f�m �
1

	2�n2�
exp�− m2/2n2�� .

In practice, this assumption of a Gaussian stochastic density
can only be approximate, on two accounts. Less significantly,
from our earlier comments, it ignores the nonlinearities of
the system. More importantly, it does not fully accommodate
the periodicity of the annulus, to which we shall return later.
Nonetheless, it will be apparent as to which results are reli-
able.

In contrasting Gaussian correlations and Gaussian prob-
abilities, we see that the definitions are dual to each other. In
the limit of unrestricted integration �large N�, they are iden-
tical if we identify

n2� = �2�N�/4�2 = N/12. �15�

However, for small N, there will be differences, as we shall
see.

On inserting Eq. �15�, we find that the likelihood f̄1 of
seeing one fluxon or antifluxon is

f̄1�N� =
1

�
�

−�

�

dz exp�− z2N/24�cos z , �16�

whereas, assuming Gaussian probability, from Eq. �5�, we
find

f̄1�N� = erf
 3	3
	2N

� − erf
 	3
	2N

� . �17�

We know that Eqs. �16� and �17� agree for large N but, as can
be seen from Fig. 4, the qualitative and quantitative agree-
ment is striking over the whole range.

In Fig. 4, we compare f̄1 as a function of N, as given by
Eqs. �16� and �17� �dashed and dotted lines�, respectively;

the dots are the values of f̄1 according to the independent
sector model for some integer values of N from Eq. �3�.
Agreement is already good at N=2 and very good at N=4.

However, the plots of Fig. 4 are somewhat deceptive for
small N. This should not worry us since, although the ana-
lytic expression �17�

f̄1�N� = O�	N�exp�− 3/2N� , �18�

vanishes faster than any power, Eq. �17� breaks down there

by definition. On the contrary, f̄1�N� of Eq. �16� is linear in N
for small N, as we supposed in Eq. �2�.

Finally, in the inset of Fig. 4, we also display f0�N�, the
probability of seeing no flux, for the case of Gaussian prob-
abilities given in Eq. �6�. Although we do not show it, at the
scale of the plot, it is essentially indistinguishable from the
result of assuming Gaussian correlations as given in Eq. �14�,

f0�N� =	 6

�N
erf
�

2
	N

6
� . �19�

We can comfortably use either.

C. Consequences

In summary, the assumptions of Gaussian probabilities �as
follows from the KZ picture� and Gaussian correlations are
complementary, with the latter providing a �linear� interpola-
tion of the other for N�2 where the former breaks down.

The first observation is that, in both cases, the maximum

probability f̄1= f̄ c of seeing one fluxon or antifluxon is frac-
tionally less than 50% �48.6%�, occurring at N=Nc�10.5.

The assumption made in our JTJ papers is that f̄1 �which we
have called f1 in our papers� scales linearly with N�C /�,

which we see is valid at best only until f̄1�0.3. We have
already just about achieved this in the existing experiments
but have not yet been able to quench fast enough to provide
a direct test of the model predictions of Fig. 4. There is,
however, a problem that stops us embracing the Gaussian
correlation approach wholeheartedly, as we have presented it
here. As we have noted, the assumption of Gaussian winding
number density can only be approximated, since it does not
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FIG. 4. �Color online� We display the probabilities f̄1= f1+ f−1 as
a function of N, as given by Eqs. �16� and �17� �dashed and dotted

lines�, respectively; the dots are the values of f̄1 according to the
independent sector model for some integer values of N from Eq.

�3�. The maximum of f̄1 occurs at N=Nc�10.5, for which value

f̄1�49%. The inset shows the probability f̄0 as a function of N, as
given by Eq. �6�, essentially indistinguishable from that by Eq. �19�
at this scale.
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take periodicity �mod 2�� into account. We have seen that

this does not matter in the calculation of f0 and f̄1.
However, for small annuli, there is a problem with Eq.

�16� in that Fourier components f�2�N� are slightly negative
��f�2��0.01� for very small N �with a similar problem for

the very much smaller f̄4�. On the other hand, by construc-

tion, the f̄m�N� of Eq. �17� are automatically positive as they
must be.

In a qualitative sense, it is of little consequence since,

throughout the linear regime, the probability f̄�=1− f0− f̄1 of
seeing more than one fluxon is very small but, as a matter of
principle, we should impose periodicity to render the prob-
abilities positive. We do not have a reliable model in which
we can do this but we can get some idea by supposing that
the phase 	 moved in a double-well potential rather than the
periodic cos 	 potential of the sine-Gordon fluxon. In that
case, assuming Gaussian correlations, the density of defects
is proportional29 to �f��0� / f�0��1/2, where f�x�= 	�x�	�0��.
It is now straightforward to impose periodicity, whereupon
we find behavior similar to that of Eq. �18� for very small N,
in that it vanishes faster than any power.30 If that were to be
equally applicable here, it is difficult to determine when such
behavior might occur, since there is no sign of such a col-
lapse in Fig. 1, but if this analogy is correct, it will repair the
minor problem of small negative probabilities while leaving
the similarity between the two approaches at a quantitative
level. In particular, as long as we are not looking at the
small-N behavior in too much detail, as we shall not hereaf-
ter, it becomes sensible to use the simpler Gaussian prob-
abilities over the whole range.

IV. FLUXON PRODUCTION IN AN EXTERNAL FIELD B
Å0

Let us now apply a perpendicular uniform magnetic field
B to the AJTJ. This breaks the 	→−	 symmetry that is
equally the reflection symmetry of the system in the plane of
the barrier. Once superconducting, the AJTJ expels the mag-
netic field, but we assume that a small fraction � of the ap-
plied field “leaks” in the radial direction through the barrier,
forming fluxons. The effect of this field is to produce a non-
zero average winding number n�= n̄�B�.

The result is a shift in phase gradient along the annulus
�coordinate x� of the form

�x	 → �x	 +
2e

�c
Ax,

where Ax=Ax
+−Ax

− is the jump in the vector potential across
the oxide layer.

If C=2�R is the circumference of the ring, radius R, then
the change in 	 due to B is


	 = �
2e

�c
� dl · A =

�

2�

e

�c
C2B . �20�

The change in fluxon number is

n̄�B� =
1

2�

	 =

�

4�2�c
eC2B . �21�

�For future purposes, let us call B1 the field value for which

	=2�, that is, n̄�B1�=1.� When n̄ is small, � adjusts in any
individual experiment so as to make n̄ integer. As a first
approximation, we take the fraction � to be independent of B.

In the presence of external fields, we are not primarily
interested in the small-N linear regime and it is sufficient to
work with Gaussian probabilities. The natural extension of
G��� of Eq. �4� for an AJTJ in a perpendicular magnetic
field B is that the phase distribution will still be normal with
variance �2�N , n̄�B���N, where we retain the definition of

N�C / �̄ of the previous section, but with nonzero average

�̄�B�=2�n̄�B�:

GN,n̄��� =
1

	2��2�N, n̄�
exp −

��� − �̄�B���2

2�2�N, n̄�
.

The trapping probabilities in the presence of an external
magnetic field will then be

fm�N, n̄� = �
−�+2m�

�+2m�

d�GN,n̄��� . �22�

To a first approximation, we assume that �2�N , n̄� is indepen-
dent of n̄�B�, as would follow from assuming Gaussian cor-
relations, i.e., for integer n̄, f n̄−m�N , n̄�= f n̄+m�N , n̄�
= f�m�N ,0�. This allows us to repeat the identification
�2�N� /4�2=N /12.

As before, we are primarily interested in the probability of
seeing a single fluxon or antifluxon, but now for fixed �Q �or
N�, as a function of B �or n̄�. Now, as far as n̄�0, then the
symmetry is broken and f+1�N , n̄�� f−1�N , n̄�. More pre-

cisely, in Fig. 5, we show f̄1�N , n̄� as a function of n̄ for fixed
N for several N, as derived from Gaussian distributions Eq.
�22�.

The main characteristics of Fig. 5 are the following:
�1� For N�Nc�10.5, there is a double peak, correspond-

ing to the ensemble average production of a single fluxon by
the applied external magnetic field. This is understood as
follows. Essentially, when, for B=B1, we have n̄=1, the
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FIG. 5. �Color online� The values of f̄1�N , n̄� as a function of n̄
for fixed N for several values of N; N=1, 2, 4, 8, and 16, according
to Eq. �22�.
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zero-field no-trapping frequency f0�N ,0� becomes the single
fluxon trapping f+1�N ,1�= f0�N ,0�, giving the right hand
peak for positive n̄�1; reversing the field, f−1�N ,−1�
= f0�N ,0� and we get the peak for negative n̄�−1. The mini-

mum value of f̄1 between the peaks is f̄1�N�, as given by the
KZ scenario.

�2� As N increases to Nc, the height f̄1�N ,0� drops. The
variance also increases, the � distribution gets broader and
the two peaks in n̄ of f̄1�N , n̄� merge at N=Nc at the value

f̄ c�0.5.
�3� As N increases beyond Nc, there is only a single peak

centered on n̄=0. We now see that the reason why the prob-
ability of seeing a fluxon decreases as �B� increases is a con-
sequence of an increased ability to create more than one
fluxon.

The curves in Fig. 5 for N=1 and N=16 bear a strong
resemblance to the experimental data shown in Figs. 2 and 3,
respectively. They comply with the most simple qualitative
test of our analysis, that the double peaks in Fig. 1 occur at a

higher frequency than f̄ c�50%, and the single peak in Fig. 2
at a lower frequency than 50%, as predicted. Further, we also
found that the defect winding number flips when we move
from the left to the right peak, as foreseen by both models.
This discrimination between a trapped fluxon or antifluxon
can be achieved by measuring the transverse magnetic field
dependence of the junction critical current Ic�B� �the details
of this new effect and its theoretical interpretation will be
reported elsewhere17�.

More specifically, we note that the 2.0 mm long sample,
being four times longer than the 0.5 mm long sample, ac-
cording to Eq. �21�, should be 16 times more sensitive to the
externally applied magnetic field B, if ��B� is independent of
B and identical for both samples. There is, indeed, a strong
difference in sensitivity, but only by a factor of 7–8, showing
that these assumptions are approximate. What is more diffi-
cult to understand quantitatively is the 16-fold increase in N
for a fourfold increase in perimeter. This requires the effi-
ciency factor a relating N to C to vary by a factor of 4
between the samples or, more fundamentally, that N is not
linear in C. Of itself, the latter does not change the scaling
behavior of Eq. �2�, but the scaling exponent �. In Refs. 10
and 11, we showed that the observed value for � was not that
for idealized JTJs.13 We explained this as a consequence of

fabrication methods, but this reopens the issue.
To go further, and match the data profiles better, we need

specific properties of JTJs, beyond the generics of the KZ
picture �or Gaussian correlations�. In particular, the assump-
tion of �2�N , n̄�B�� being independent of n̄�B� is oversimple.
More realistically,31 �2�N , n̄�B��=�2�N ,0��1+k2B2�, where
k2� ��J /C�2, i.e., it is inversely proportional to the ring area
and to the Josephson current density Jc, since �J

2�1 /Jc. Both
are consistent with the experimental data, such as the flatten-
ing of f̄1 for small B field values and the fact that the peak
amplitudes f�n��Bn� strongly decrease with n, as we shall
see elsewhere.

V. CONCLUSIONS

We have developed two complimentary theoretical ap-
proaches to understand the experimentally observed sponta-
neous production of fluxons on quenching annular JTJs in
the presence of an externally applied transverse symmetry-
breaking magnetic field B. They either assume Gaussian
probabilities �as motivated by KZ causal horizons� or Gauss-
ian correlation functions �as motivated by models for transi-
tions based on the rapid growth of instabilities�. Both of
these approaches, which are, approximately, identical, lead to
the same scaling behavior of Eq. �1�, from which Eq. �2�
follows in the appropriate regime.

The theory is able to nicely reproduce the double peak
behavior of the likelihood f1 to produce a single defect
�fluxon� shown in Fig. 2 for a sample having a circumference
equal to 0.5 mm and the single peak in Fig. 3 for a sample of
circumference 2.0 mm. When we began experiments on
fluxon production in an external symmetry-breaking field,
we anticipated the behavior shown in Fig. 2, and not that of
Fig. 3, which was initially incomprehensible. We now under-
stand it, as a consequence of the ease of producing more than
one fluxon in larger annuli. Specifically, our models do pro-
vide a good first approximation at a better than qualitative
level and the experimental success of the Gaussian picture in
describing the production of fluxons is of a piece with the
scaling behavior so robustly demonstrated in Fig. 1.
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