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In the present paper, the results of theoretical modeling of flux flow oscillator �FFO� included into
phase-locked loop �PLL� system and its comparison with experiment are outlined. To describe
theoretically the dynamics of phase-locked FFO, we have considered two models: first order PLL
system and the PLL system with integral-proportional filter. While the first order PLL system may
be treated analytically even in the frame of nonlinear PLL model and gives satisfactory agreement
with experimental results, it does not describe all peculiarities of spectral density, which may be
described well by a more sophisticated model with the integral-proportional filter. The quantitative
prediction of spectral ratio improvement due to increase of PLL regulation bandwidth is given.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2783984�

I. INTRODUCTION

The Josephson flux flow oscillator1 �FFO� has proven to
be the most developed superconducting local oscillator for
integration with an superconductor-insulator-superconductor
�SIS� mixer in a single-chip submillimeter-wave supercon-
ducting integrated receiver �SIR�.2 Such a receiver comprises
in one chip a planar antenna and an SIS mixer, pumped by an
integrated FFO. The dynamical and fluctuational properties
of FFO have been intensively studied both experimentally
and theoretically.1–21 At the present time, flux flow oscillators
have high enough output power, wide operational bandwidth,
and rather easy tunability, but they still have a wide line-
width of the emitted radiation from the junction �from
2 to 30 MHz for a Nb–AlOx–Nb FFO in 400–700 GHz
working frequency range, see, e.g., Ref. 20�.

In contrast to many other types of oscillators, the FFO
fluctuations are mainly caused by internal wideband sources,
such as thermal and shot noise, that result in a spectral line of
emission with nearly perfect Lorentzian shape. The power in
the so-called “wings” decreases much slower with frequency
offset from the carrier than the Gaussian shaped spectral line
obtained when external noise sources are dominant. Thus for
the FFO, most external noise sources can be almost ne-
glected since they, on one hand, are masked by the internal
wideband fluctuations and, on the other hand, can be com-
pensated by frequency locking to reference oscillators, so the
main fundamental and technical problem at the present time
is the reduction of “natural” FFO linewidth, which deter-
mines the final spectral quality of the phase-locked oscillator.
In order to obtain the frequency resolution and frequency
stability required for practical application of a heterodyne
spectrometer �of at least 1 ppm�, the integrated local oscilla-
tor �LO� must be phase locked to an external reference. To
achieve this goal, several different types of ultrawideband
phase-locked loop �PLL� systems �the attained regulation

bandwidth is about 10 MHz� has been developed and
implemented.16–18 All these PLL systems are based on analog
electronic components that allow them to operate for rather
low signal-to-noise ratios of order unity. These achievements
enabled the development of a 500–650 GHz integrated re-
ceiver for the Terahertz Limb Sounder19 �TELIS� intended
for atmosphere study and scheduled to fly on a balloon in
2008. Here we report some results of theoretical modeling of
FFO included into PLL system and its comparison with ex-
periment.

II. STATEMENT OF THE PROBLEM AND MAIN
RESULTS

It is known that the flux flow �traveling wave� oscillator
is the voltage controlled oscillator �VCO�.19 For a standard
VCO, included into the phase-lock loop system, the equation
for a phase difference � between the reference and the phase-
locked oscillator has the following form:22

p� = �0 − �k�p�sin��� + ��t� . �1�

Here p=d /dt, �0 is the initial detuning of the phase-locked
oscillator with respect to the reference, �=�sAAm /2 is the
bandwidth of synchronization �detention bandwidth�, � is
the coefficient of conversion of the multiplier, s is the slope
of the linear part of the characteristics of the control element,
A is the amplitude of the phase-locked oscillator, Am is the
amplitude of the reference oscillator, and ��t� is the white
Gaussian noise with the correlation function ���t���t+���
=2D����. The synchronization bandwidth is called the area
of initial detunings, where the regime of synchronization is
possible. The frequency capture bandwidth is called the area
of initial detunings, where the regime of capturing is pos-
sible. The capture bandwidth is the area of initial detunings,
where at any initial conditions the regime of synchronization
takes place. In the general case, the synchronization band-
width is wider than the capture bandwidth, and they coincide
for the simplest first order PLL system.

The PLL with the idealized low bandpass filter, when
k�p�=1, i.e., the transfer coefficient of the filter in a wide
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band of low frequencies is equal to unity and for high fre-
quencies is equal to zero, is called the idealized PLL system
or the first order PLL system. In this case the PLL equation
has the form

d�

dt
= �0 − � sin��� + ��t� . �2�

When the low frequency band filter is the integrating RC
circuit, the transfer coefficient is k�p�=� / ��+ p�, �=1/RC,
and the PLL equation has the form

d2�

dt2 + �
d�

dt
= ���0 − � sin���� + ���t� . �3�

In order to fulfill two contradictory requirements; to fol-
low the fast variations of the signal and to remember the old
information, one can use the proportionally integrating filter
as the low frequency band filter �as it is in our experimental
PLL system�: k�p�=�+ �1−�� / �1+T2p�= �1+T1p� / �1+T2p�,
�=T1 /T2=�T1. In this case, the PLL system is described by
the system of two first order differential equations:

d�

dt
= 	 − �� sin��� + ��t� ,

�4�
d	

dt
= − �	 + ��0 − ���1 − ��sin��� .

In the general statement of the problem, as it is consid-
ered in Ref. 23, it is necessary to find the spectral character-
istics of the signal

z�t� = R0�1 + r�t��cos�
0t + ��t�� , �5�

where R0 and 
0 are the mean constant values of the ampli-
tude and the frequency. In order to consider the process z�t�
to be sinusoidal oscillation with time-varying amplitude and
phase, the temporal functions r�t� and ��t� must be slow
enough in comparison with cos�
0t�, which we will consider
to be fulfilled. The random function r�t� represents relative
fluctuations of the amplitude, while ��t� represents phase
fluctuations, which are related to the frequency fluctuations �
in the following way:

��t� = �
t0

t

��t�dt . �6�

Let us suppose that �r�t��= ���t��= ���t��=0, and that corre-
lation �or structural� functions �r���, �����, �r���� and the
corresponding spectral densities Sr�
�, S��
�, Sr�

0 �
�, Sr�
1 �
�

are known.
Our task is to find spectral density Sz�
� of the signal

z�t�. In the following we neglect the amplitude fluctuations
and will only consider the phase fluctuations ��t�, since it is
known that only nonstationary phase fluctuations lead to
nonzero linewidth of an oscillation.23 The correlation func-
tion of the second kind of the signal z�t� is

�z��� = lim
T→

1

2T
�

−T

+T

�z�t�z�t + ���dt .

We define the power spectral density of the signal z�t� as

Sz�
� =
1

2�
�

−

+

�z���cos�
��d� .

It can be demonstrated that, using the condition of slow-
ness of ��t� in comparison with cos�
0t�, the correlation
function of the second kind may be presented in the form

�z��� = A0���cos�
0�� − A1���sin�
0�� , �7�

where A0��� and A1��� are even and odd functions of the
argument �. In the case when amplitude fluctuations are ne-
glected and the phase increment ���t�=��t+��−��t� is a
stationary process, the functions A0��� and A1��� have the
forms

A0��� = �cos ���, A1��� = �sin ��� . �8�

The asymmetry of the spectral line takes place for A1���
�0. If fluctuations of amplitude and frequency are statisti-
cally independent, then the function A1��� may be not equal
to zero for asymmetric distribution of frequency fluctuations.
In practice, however, the distribution of ��t� is symmetric, as
in the case when the nature of frequency fluctuations is the
thermal noise, then the only correlation between r�t� and ��t�
may lead to A1����0 and, correspondingly, to asymmetric
form of spectral line. Since we neglected by the amplitude
fluctuations, this means that the spectral line is actually sym-
metric with respect to the carrier, and in the following we,
therefore, will focus on an even component:

A0��� = �cos ��t + ��cos ��t�� + �sin ��t + ��sin ��t�� . �9�

As it has recently been proven experimentally,14,16,17

and, in fact, confirms the assumption of symmetry of fre-
quency fluctuations, the power spectral density of a free-
running flux flow oscillator is well described by the Lorent-
zian shape:

Wv�
� =
R0

2

2�

��fFFO/2�
��fFFO/2�2 + 
2 , �10�

where �fFFO is the free-running FFO linewidth at 3 dB level.
Analytically, the same result may be obtained from Eq. �2�
for �0=�=0 and noise intensity D equals �fFFO/2, see Ref.
23.

The FFO linewidth was measured in a wide frequency
range up to 730 GHz using a novel experimental technique,
see Refs. 15–17. A specially designed integrated circuit com-
prising the FFO, the SIS mixer, and the microwave circuit
elements needed for the rf coupling is used for linewidth
measurements. Both the SIS and the FFO junctions are fab-
ricated from the same Nb–AlOx–Nb trilayer. The signal
from the FFO is applied to the harmonic mixer �SIS mixer
operated in Josephson or quasiparticle mode� along with the
signal from a reference frequency synthesizer, fsyn

�20 GHz. In order to prevent the synthesizer signal �as well
as its harmonics� from reaching the FFO, a high-pass micros-
trip filter with a cut-off frequency of about 200 GHz is in-
serted between the FFO and the harmonic mixer. The inter-
mediate frequency �IF� signal with frequency f IF= ± �fFFO

−nfsyn� is boosted first by a cooled amplifier and then by a
room temperature amplifier for use in the PLL system. A part
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of the signal is applied via the directional coupler to a spec-
trum analyzer which is also phase locked to the synthesizer
using a common reference signal at 10 MHz. Thus, the spec-
trum obtained at f IF of about 400 MHz, as well as the phase
noise evaluated from these data, is the difference between the
FFO signal and the nth harmonic of the synthesizer.

In the PLL unit the intermediate frequency is compared
in a frequency-phase discriminator with a 400 MHz refer-
ence signal. The output signal proportional to the phase dif-
ference is returned via the Loop Bandwidth Regulator �maxi-
mum bandwidth of about 15 MHz� and then fed back to the
FFO via a coaxial cable terminated with cold 50 	 resistor
mounted on the chip bias plate. In order to perform accurate
linewidth measurement of a free-running FFO, the IF spectra
have to be averaged with a sufficiently narrow video band-
width. Specially designed frequency-lock �FL� system with
narrow bandwidth ��10 kHz� was used for frequency lock-
ing of the FFO in order to measure the free-running line-
width �f of the free-running FFO. In this case it is assumed
that drift and only very low frequency noise are eliminated
by the narrow-band feedback.

Our aim is to investigate how the shape of spectral den-
sity of FFO is changed if the FFO is included into the PLL
system. Since in all experimental setups the shape of spectral
line of free-running FFO was found to be Lorentzian, if
proper shielding and frequency lock were realized, the re-
sults, presented below, seem to be rather generic, and theo-
retically the problem to phase lock the FFO becomes the
problem to phase lock an oscillator with Lorentzian line
shape and known width.

Let us start our consideration from the analysis of the
first order PLL system, Eq. �2�. Although this model is ideal
and can hardly be realized in practice, it allows to qualita-
tively understand how the effect of PLL changes the spectral
density of the phase-locked oscillator and, in particular, how
the variation of the free-running linewidth and the variation
of synchronization bandwidth will affect the wings of the
spectral density, this is illustrated in Figs. 1 and 2. For the
first order PLL system, one can consider not only linear PLL
model, which works for the case of strong synchronization
since it neglects the phase diffusion, but also the nonlinear

one. Using the results of Ref. 24, the characteristic time scale
of the correlation functions �cos ��t+��cos ��t�� and
�sin ��t+��sin ��t�� may be obtained analytically for arbi-
trary values of noise intensity D, arbitrary initial detuning
�0, and arbitrary synchronization bandwidth �. Also, as it
has been demonstrated in Ref. 24, if �0 is not so close to �,
then the temporal behavior of the correlation functions is
approximately exponential, and the corresponding spectral
densities are approximately Lorentzian.

In Fig. 1 the spectral density of sin ��t� for the first order
PLL system for �0=0.5, �=1 is presented as an example of
the dependence of spectral wings on different values of noise
intensity �free-running linewidth�. It is seen that the Lorent-
zian shape gives a good fit both for small and for large noise
intensities �which is rather unusual since the considered sys-
tem is highly nonlinear�, and the largest deviation is ob-
served for intermediate noise intensity, of the order of poten-
tial barrier height �or, in other words, when the free-running
linewidth is comparable with the synchronization band-
width�.

Now, let us consider how the value of synchronization
bandwidth � affects the spectral density of the phase-locked
oscillator. From Fig. 2, one can see that with increase of the
synchronization bandwidth, the power contained in the spec-
tral peak becomes larger, while spectral density around the
peak decreases. On the other hand, the wings of the spectral
density, located further than approximately 3�, are not actu-
ally affected by the PLL system. It should be noticed that in
the case of the first order PLL system, it is difficult to dis-
tinguish visually what the value of � is, see Fig. 2. The
spectral wings are smooth and there are no specific bound-
aries, such as climbs or spikes, indicating the synchroniza-
tion bandwidth.

In spite of the simplicity of the first order PLL model, it
nevertheless gives rather good agreement of the spectral ratio
�SR� �ratio between the phase-locked power and the total
power� with the experimental results, see Fig. 3, dashed line.
However, it does not describe all peculiarities of the experi-
mental spectral density even qualitatively �see Fig. 4�. To
resolve this problem, let us consider a more sophisticated
model with the integral-proportional filter of the type that is

FIG. 1. The spectral density of sin ��t� for the first order PLL system for
�0=0.5, �=1, and different values of noise intensity �from bottom to top�
D=0.1,0.2,0.5,1 ,2 ,5. Dots are results of computer simulations, solid lines
are Lorentzian approximation.

FIG. 2. The spectral density for the first order PLL system for �0=0, D
=1, and different values of synchronization bandwidths �. Dashed line is
�=0.

063912-3 Pankratov, Vaks, and Koshelets J. Appl. Phys. 102, 063912 �2007�

Downloaded 01 Oct 2007 to 85.143.2.50. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



utilized in the experimental PLL system. In contrast with the
first order PLL system, in this case one can perform analyti-
cal analysis only in the frame of the linear PLL model. Fol-
lowing Ref. 25, the modulo of the transfer function of the
PLL with the integral-proportional filter has the form

	H��
�	 = �

��2� + ���� − 1� + ��2�
2�2 + ��
 − �
3�2

�2�2 + ��2 + 2���� − 1� + �2�2�
2 + 
4 .

�11�

In the frame of linear PLL model, the spectral density of the
phase-locked signal may be presented from 	H��
�	 as
Sp�
�= 	1−H��
�	2Sa�
�, where Sa�
� is the spectral density
of the free-running oscillator. The transfer function H��
�
�Eq. �11�� qualitatively describes the shape of the spectral
density of the phase-locked signal, in particular, it describes
the characteristic climb, see Fig. 4; it also gives good quan-
titative agreement for spectral ratio for the case of large spec-
tral ratios only, see Fig. 3.

Therefore, let us consider the nonlinear PLL model that
for the case of the integral-proportional filter may be ana-

lyzed by means of computer simulations of Eq. �4�. The re-
sults of comparison of experimental and theoretical spectral
densities are presented in Fig. 4. It is seen that the experi-
mental curve has a climb, after which it monotonically de-
creases. The first order PLL system does not describe such a
climb. The model, described by Eq. �4�, gives good quanti-
tative agreement with the experimental results. The param-
eters for which good fitting of experimental results has been
achieved are D=�f /2=1.655 MHz, �=25 MHz, �0

=17.2 MHz, �=0.01, and �=7.4 MHz. The spectral ratio,
derived from the numerical simulation of Eq. �4� for �R

�10 MHz �where �R is the regulation bandwidth, measured
as the distance between the carrier and the spectral climb� is
presented in Fig. 3 by the solid curve. It is seen that the
agreement with the experimental results is nearly perfect.
The results for linear theory �Eq. �11�� are presented by the
curve with triangles. Good agreement with experimental re-
sults is achieved for spectral ratios above 90%.

Another important issue that should be addressed is the
dependence of the spectral ratio on the PLL regulation band-
width �R. As one may see from Fig. 5, the increase of �R by
a factor of 2 or 3 significantly suppresses the spectral density
around the carrier. The spectral ratio versus regulation band-
width �R is presented in Fig. 6. The spectral ratio increases
almost linearly with PLL bandwidth; saturation takes place
only at �R of about five times larger than the free-running
linewidth �f , ensuring SR value as large as 90%. The effec-
tive bandwidth of the existing PLL system used for the FFO
phase locking is limited mainly by the delay in the cables
between cryogenic FFO and room temperature PLL electron-
ics. To overcome this limitation, the cryogenic phase
detector26 is under development.

Equally important is decrease of free-running linewidth
of an oscillator �compare curves for different �f in Fig. 6�.
In Fig. 7 the spectral ratio versus free-running linewidth �f
is presented for three values of the regulation bandwidth �R

of 10, 20 and 30 MHz �see also Fig. 5�. Optimization of the
FFO layout and its parameters is underway �see Refs. 20, 21,
and 27�, but even for the present Nb–AlOx–Nb FFOs and
existing PLL systems, SR more than 50% can be obtained in

FIG. 3. The spectral ratio vs free-running linewidth �f . Dots are experimen-
tal results, dashed curve is the first order PLL system, solid curve is PLL
system with integral-proportional filter �nonlinear theory�; curve with tri-
angles is the linear theory �Eq. �11��.

FIG. 4. Comparison of experimental and theoretical spectral densities �only
the right half is shown due to symmetry� of the phase-locked FFO. Circles
are experimental results, dashed curve is the first order PLL system �Eq.
�2��; solid curve is the PLL with the integral-proportional filter �Eq. �4��.

FIG. 5. Comparison of theoretical spectral densities �only the right half is
shown due to symmetry� of the phase locked FFO for different regulation
bandwidths. Short dashed line is �R�10 MHz; solid line is �R�20 MHz;
long dashed line is �R�30 MHz.
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the range of 550–700 GHz.28 This made possible the devel-
opment of the single-chip superconducting integrated spec-
trometer for the TELIS balloon project28 intended to measure
a variety of stratosphere trace gases.

III. CONCLUSIONS

In conclusion, the spectral properties of the phase-locked
flux flow oscillator have been studied. It has been demon-
strated that the spectral density of the phase-locked FFO may
be described well by the PLL model with integral-
proportional filter. The simplest first order PLL model does
not describe the specific climb of the spectral density but
gives rather good agreement with the experimentally ob-
served spectral ratio. As it follows from the performed analy-
sis, for PLL with 10 MHz regulation bandwidth, the free-
running FFO linewidth must not exceed 5–6 MHz to phase
lock at least 50% FFO power and 3 MHz to phase lock 70%
FFO power. The obtained results allow us to predict a pos-
sible spectral ratio for a given PLL system at experimentally
measured free-running FFO linewidth.
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