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Abstract. We have numerically investigated the dynamics of a long linear Josephson tunnel
junction with overlap geometry (Flux-Flow Oscillator, FFO). The study is performed in the
frame of a modified sine-Gordon model, which includes surface losses, self-pumping effect, and
in an empirical way the superconducting gap. The electromagnetic coupling to the environment
is modeled by a simple resistor-capacitor load (RC-load) placed at both ends of the FFO. In our
model the damping parameter depends both on the spatial coordinate and on the amplitude
of the AC voltage. In order to find the DC current-voltage curves the damping parameter
has to be calculated self-consistently by successive approximations and time integration of the
perturbed sine-Gordon equation. The modified model gives better qualitative agreement with
experimental results than the conventional perturbed sine-Gordon model.

1. Introduction
During the last decade the flux-flow oscillator (FFO) [1] has been considered as the most
promising local oscillator in superconducting integrated sub-millimeter receivers [2] and
spectrometers for space-born radio astronomy and atmosphere monitoring due to its wide
operational bandwidth, easy broadband tunability, and relatively high radiation power. The
FFO is a long linear Josephson junction in which a viscous flow of magnetic flux quanta (fluxons)
is maintained by a DC bias current and an applied DC magnetic field. The spectral linewidth
of the radiation emitted from the ends of the free-running FFO is important for its ability
to be frequency and phase locked. Typically, the observed free-running linewidth is 2-20MHz
for an Nb-AlOx-Nb FFO in the 400-700GHz frequency range. The dynamical and fluctuational
properties of the FFO has been intensively studied both experimentally and theoretically [1]-[20].
In contrast to many other types of oscillators, the FFO fluctuations are mainly caused by internal
wideband sources, such as thermal and shot noise, that result in a spectral line of emission with
nearly perfect Lorentzian shape. The power in the so-called ”wings” decreases much slower
with the frequency offset from the carrier than the Gaussian shaped spectral line obtained when
external noise sources are dominant. Thus for the FFO most external noise sources can be
neglected since they, on one hand are masked by the internal wideband fluctuations, and on the
other hand can be compensated by frequency locking to reference oscillators or high-Q cavities.
It is a pertinent fundamental and technical problem to reduce the free-running linewidth of the
FFO.



In order to make an optimal FFO design we need a trustable mathematical model that
includes both high and low frequency effects. However, previous theoretical attempts to
reproduce the detailed behavior of the DC current-voltage characteristics (IVC) of practical
FFOs were not fully successful; with given parameters one could reproduce either the steep
Fiske steps or the fairly smooth flux-flow curve. The characteristic structure observed at the
so-called boundary voltage due to the self-pumping effect has only been studied by Koshelets et.
al. [7]. In the present paper we propose a modified sine-Gordon model which takes into account
both surface losses and self-pumping effect. In order to model the electromagnetic coupling
to the environment a simple resistor-capacitor load (RC-load) is placed at both ends of the
FFO. Using the model we are able to calculate DC IVCs which are qualitatively similar to the
experimental curves.

2. The model
For several decades the perturbed sine-Gordon model has served as the most adequate model
for the long Josephson tunnel junction (JTJ), giving a good qualitative description of its basic
properties such as Fiske resonances, vortices dynamics, etc.

φtt + αφt − φxx = βφxxt + η(x)− sin(φ), (1)

where indices t and x denote temporal and spatial derivatives, respectively. Space and time have
been normalized to the Josephson penetration length λJ and to the inverse maximum plasma
frequency ω−1

p , respectively, α is the damping parameter, β is the surface loss parameter, and
η(x) is the normalized DC bias current density in the so-called overlap geometry. The proper
value of the surface loss parameter, β, is still unclear, but it definitely depends on voltage, so
we started out from the value β ≈ 0.03. The bias current density is normalized to the critical
current density, and α = ωp/ωc, where ωp =

√
2eIc/h̄C, ωc = 2eIcRN/h̄, Ic is the critical

current, C is the JTJ capacitance, and RN is the normal state resistance.
The boundary conditions, which are related to the external DC magnetic fields, the

distribution of the DC bias current, and the high frequency electromagnetic coupling to the
environment, are very important. In practice the magnetic fields at the FFO ends (used as
boundary conditions for the one-dimensional sine-Gordon equation) are created by a control
line current running in the ground electrode along the junction. Since the magnetic field is
determined by the geometry of the electrodes in the vicinity of the FFO ends the fields will
not be symmetric if the topology of the electrodes asymmetric. When the FFO is used as a
local oscillator in practical microwave circuits one needs to match it’s low impedance at the
”radiating end” (x = 0 in our model) to the higher impedance of eg. an SIS-mixer. The signal
from the FFO is fed to the mixer via a microstrip line with impedance transformers and some
filter elements. This network enables a fairly good match of the radiating end to the external
environment. Usually the opposite end x = L (where the chain of fluxons enters the junction)
is strongly mismatched. Obviously, due to this reason the magnetic field values are different at
the opposite FFO ends. These conditions were introduced into the model by choosing proper
parameters of the RC-loads and magnetic field unbalance in the boundary conditions. So, we
consider a JTJ with overlap geometry, where a small asymmetry is introduced as a little inline
component of the current and use the following end boundary conditions (see Ref. [4])

φ(0, t)x + rLcLφ(0, t)xt − cLφ(0, t)tt + βrRcRφ(0, t)xtt + βφ(0, t)xt = Γ−∆Γ (2)

and

φ(L, t)x + rRcRφ(L, t)xt + cRφ(L, t)tt + βrRcRφ(L, t)xtt + βφ(L, t)xt = Γ + ∆Γ, (3)



that simulate simple RC-loads. Γ is the normalized magnetic field, and ∆Γ = 0.05Γ is a
small magnetic field difference (introduced as an experimentally motivated fitting parameter,
usually, ∆Γ is of the order of 5-20%). The dimensionless capacitances and resistances, cL,R

and rL,R, are the FFO RC-load placed at the left (x = 0 output) and at the right (x = L

input) ends, respectively. Following Ref. [20], if both overlap ηov = (1/L)
∫ L
0 η(x)dx and inline

ηin = 2∆Γ/L components of the current are present, the total current, ηt, with respect to which
all current-voltage characteristics will be computed, is the sum of overlap and inline components:
ηt = ηov + ηin.

Figure 1. The structure of distributed
Josephson junction of the ”overlap” geometry.
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Figure 2. The distribution of overlap
component of bias current η(x). Short-dashed
line: η(x) = η0L

π
√

x(L−x)
; solid curve: x0 = 11,

x1 = 25.5, p = 0.13, a = 0.005.

The profile of the DC bias current is not known and should be calculated from a three-
dimensional model of the JTJ with a realistic geometry of the bias electrodes. From the
experimental design one can, however, make a qualified guess on the qualitative behavior of
the overlap component of bias current profile, e.g., the positions of the two maxima for this
function are located at the edges of the current injector electrode. As a qualified guess let
us assume the current profiles depicted in Fig.2. Since the JTJ is long compare to its width,
one can use, as a first approximation, the current profile known for a superconducting film:
η(x) = η0L

π
√

x(L−x)
(see, e.g., Ref. [21]), where L is the dimensionless length of the JTJ and η0 is

a constant given by the total overlap component of the current in the film. In order to describe
also the situation where the width of the bias electrodes is smaller than the junction length (as it
was realized in some experimental designs), let us consider the current profile, depicted in Fig.2
by the solid curve. Here we assumed, that the current profile is parabolic (with the curvature
a = 0.005 in Fig. 2) between the left and the right boundaries of the bias electrode x0 and x1

(0 ≤ x0 ≤ x ≤ x1 ≤ L), and drops down exponentially in the unbiased tails x ≤ x0, x ≥ x1 with
the decay factor p: exp(−px) (with p = 0.13 in Fig. 2). The decay factor and the parabolic
curvature will be used as fitting parameters when we make a comparison with the experimental
IVCs.

3. Influence of surface losses on current-voltage characteristics
First, we investigate the conventional sine-Gordon model including the surface losses term βφxxt,
as given by Eq. (1). To solve Eq. (1) numerically, we have used the implicit difference scheme,
described, e.g., in [22]. If the model parameters are selected close to the experimental ones the



numerical simulations of Eq.(1) give a reasonably good qualitative agreement with the measured
IVCs (i.e. the dependence of the time-averaged dimensionless voltage v(t) = dφ/dt on the total
bias current ηt = η0 + 2∆Γ/L, η0 = (1/L)

∫ L
0 η(x)dx) (see Fig.3). The JTJ length is L = 40,

α = 0.033, β = 0.035, cL = cR = 10, rL = 2, rR = 100, the polarity of the bias current and the
magnetic field Γ are chosen such that the fluxon chain moves from right to left.
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Figure 3. A series of DC current-
voltage characteristics each obtained for in-
cremented values (from left to right Γ =
1.85; 2.0; 2.2; ...; 3.6; 3.8) of the external mag-
netic field for the following parameters: L =
40, α = 0.033, β = 0.035, cL = cR = 10,
rL = 2, rR = 100. Thin lines - experimental
measurements. Numerical simulations: trian-
gles, crosses, circles, etc., for the current pro-
file, depicted in Fig. 2 by the solid line.
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Figure 4. Calculated current-voltage char-
acteristics of the FFO. Numerical simulations
for different values of the load; crosses - un-
loaded symmetrical case, thin lines - asym-
metric load rL = 2, rR = 100, circles - perfect
matching rL = rR = 1, all other parameters
are the same as used for the IVCs in Fig.3.

A typical set of experimental IVCs at different fixed values of the magnetic field for an Nb-
AlOx-Nb FFO is shown in Fig.3 (thin solid lines). In this figure the experimental data are
represented in the normalized units valid for Eq.(1). In order to convert units correctly we
need to know the total critical current Ic of the junction and ωp, as the DC voltage has to
be finally normalized to ωph̄/2e. We took Ic = 0.72 · δIg and ωp = CSW /λJ , where CSW is
the Swihart velocity and δIg is the jump of the quasiparticle current at the superconducting
gap voltage vg. In the experiment these parameters had the following values: Ic = 243mA,
ωp = 1.28 · 1012Hz. It gives the normalized value of vg equal to 5.7. The so called ”boundary
voltage”, which is 1/3 vg clearly divides the family of IVCs into two regions with a boundary at
vb = 1.9. Below vb the IVC consists of nearly vertical, equally spaced voltage spikes, the so-called
Fiske steps, which are due to electromagnetic resonances (Fiske resonances) in the JTJ. Above
vb the damping parameter is drastically increased due to the so-called self-pumping effect [7],
which is explained as a resonant tunneling of quasiparticles similar to the well known photon
assisted tunneling, PAT. As it was shown in [7], the self-pumping results in an increase of the
quasiparticle current and accordingly the shunt damping α. This results in a broadening of the
resonant Fiske steps and a transformation of the IVC into the smooth so-called flux-flow curve.
For v > vb continuous tuning of the FFO frequency is possible and for fixed bias current the
junction DC voltage increases approximately proportional to the magnetic field.

However, as it follows from Fig.3, even without accounting for the self-pumping effect, but
with the surface losses included, one can see the same IVCs behavior: smoothing at higher



oscillation frequency. It leads to a qualitative coincidence between the experimental and
theoretical results for the bias current profile, depicted in Fig.2 by the solid line. It is known,
that it is very difficult to numerically calculate the IVC for a long JTJ with small damping, i.e.
in the region with steep Fiske steps (voltage spaced as π/L). Usually, the solution gets locked
around one step and it is only possible to ”jump” to neighboring steps by, e.g., changing the
initial conditions. In the present case, however, all the Fiske steps could be calculated using a
continuous change of bias current, probably due to the account of surface losses, which makes
the curves smoother.

4. Influence of RC load on current-voltage characteristics
In Fig.4 we have calculated the effect of the high frequency load on the Fiske steps using the
same parameters and current profile as for the IVCs shown in Fig.3. First the almost unloaded
symmetric case, rL = rR = 100 (crosses in Fig.4), the Fiske steps extend to higher currents and
seem to have larger voltage spacing (sometimes even by the separation 2π/L) when compared
to the asymmetric case with rL = 2, rR = 100 (solid lines). Secondly, with a perfect match at
both ends (rL = rR = 1 - circles) the Fiske steps disappear almost completely, see the curve for
Γ = 2. The same behavior is observed also for larger magnetic field Γ = 2.8, the only difference
being that the Fiske steps are smoother due to the surface losses.
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Figure 5. Current-voltage characteristics
of the FFO. Thin line - experimental mea-
surements. Numerical simulations including
the self-pumping effect - circles. Inset: the
damping α(x) at the middle of the junction
(crosses) and spatially averaged (circles).
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Figure 6. Spatial dependence of the shunt
damping α(x) for three currents ηt; Γ = 3.7:
curve 1 - ηt=0.3, curve 2 - ηt=0.2, curve
3 - ηt=0.1. The dashed line represents the
distribution of η(x).

5. Including the self-pumping effect
In order to give a better description of the experimental situation one should incorporate into
the sine-Gordon model the self-pumping effect, with α being defined self-consistently from the
amplitude of the AC-voltage. If we start from the unpumped DC IVC, ηt(vdc), and apply a high-
frequency signal, so the total voltage across the junction is v(t) = vdc + vac cos(ωt + ψ), then,
according to [23], the total DC quasiparticle tunneling current ηpump of the pumped junction
will be given by

ηpump(vdc, ω, vac) =
n=+∞∑

n=−∞
J2

n

(
evac

h̄ω

)
ηt(vdc + nh̄ω/e), (4)



where Jn are Bessel functions of n’th order. One can use this formula for the photon assisted
tunnelling (PAT) of quasiparticles to take into account the self-pumping effect by treating
the Josephson radiation as an external signal. Therefore, if we take vdc = h̄ω/2e and the
parameter α (which has to be dependent on the coordinate x) as the ratio ηpump/vdc, we get
α = ηpump(vac(x), x)/vdc. In our simulations we took ηt(vdc) of the unpumped FFO following
the nonlinear resistive model as (see [24], formula (2.27)):

ηt = α0v

{
b

(v/vg)n

((v/vg)n + 1)
+ 1

}
.

Here the factor b = Rj/Rn = 35 (compare with b = Rj/Rn = 25 in Ref. [7]) is the ratio between
the normal state resistances below and above the gap voltage. The power index n may be taken
from 10 to ∞, while we took n = 80, however, there were no visible difference between calculated
curves for n ranging from 20 to 80.

With these modifications the self-pumped IVC can be numerically computed using the
iterative procedure combined with the implicit difference scheme for the solution of Eq. (1).
Namely, at the first step the AC voltage of JTJ with a certain initial value of α is calculated.
At the second step the obtained AC voltage vac(x) is considered to pump the JTJ. Here the
damping α(x) = ηpump(vac(x), x)/vdc is computed. This procedure is repeated with a new α(x)
until the steady-state value of vdc is found with a desired precision. The IVC obtained by this
approach is shown in Fig.5 (circles). It has a step-like peculiarity on the foot of the curves at the
”boundary voltage”, similar to that observed for the experimentally measured IV-curves (Fig.5,
thin lines, see also the same peculiarity for α(v) in the inset). The curve is computed for almost
the same parameters as in Fig.3, and Γ = 3.7, L = 40, β = 0.04, cL = cR = 10, rL = 2, and
rR = 100.

In spite of the nearly perfect agreement between the numerically computed curve and the
experimental curve, it should be noted, that formula Eq.(4) is valid only for small driving
amplitudes, and the curves, calculated for large self-pumping steps demonstrate unstable
behavior. To extend our analysis for arbitrary values of the self-pumping steps one should
either use a more exact formula instead of (4) or even consider a more general integral equation
instead of the sine-Gordon equation (1). Nevertheless, the presented approach allows us to
perform the analysis of the self-pumping effect, and, in particular, to study the dependence of
ohmic losses versus the DC voltage and the spatial coordinate x. The inset of Fig.5 shows the
damping α(x) in the middle of the junction (crosses) and averaged over the coordinate x (circles).
The damping increases significantly (up to 3 times) for voltages above vb = 1.9 as predicted in
Ref.[7]. In difference with Ref.[7], in the inset of Fig. 4 α is considered in a large scale, so if
one cuts the curves up to voltages 2.4, and consider in more detail the currents below 0.04, one
will see the same qualitative behavior of α as in Ref. [7], with the only exception, the we do not
observe the small step at vg/5, since we consider pumping the FFO by its own radiated signal,
which is rather small for small currents/voltages, while in Ref. [7] this pumping was considered
to have constant amplitude independent of the junction’s biasing point. The functions α(x) for
the three total bias current values ηt (calculated for the corresponding voltages of Fig.5) are
shown in Fig.6 together with the distribution of the applied bias current η(x). It is seen, that
α(x) increases with increasing overlap bias current density η(x), and this effect is even more
pronounced for large voltages, where the self-pumping effect increases.

6. Conclusions
The present paper contains an analysis of the nonlinear dynamics of a long overlap Josephson
tunnel junction in the frame of a modified sine-Gordon model which takes into account surface
losses and RC load at both ends of the junction. It is demonstrated that the qualitative behavior



of the DC current-voltage characteristics of a real Flux-Flow Oscillator may be reproduced using
a realistic set of junction and bias parameters. In particular, the transition from the I-V curve
with steep and narrow voltage spaced Fiske steps to the smooth I-V curve in the flux-flow region
may be explained by the surface losses and the self-pumping effect. It was shown that the self-
pumping effect may increase the ohmic losses up to 3 times, which in turn leads to additional
smoothing of the I-V curves. The obtained results give us the hope that the use of more advanced
models will allow for a very detailed prediction of the I-V characteristics of practical FFOs.
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