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Abstract. The aim of the project is to investigate spontaneous symmetry breaking in non-
adiabatic phase transitions (Kibble-Zurek processes). A long and narrow annular Josephson
tunnel junction is subjected to repeated thermal quenches through the normal-superconducting
transition. The quench rate is varied over 4 orders of magnitude. After the quench the result of
the spontaneous production of topological defects, trapped fluxons, is unambiguously observed
as zero-field steps in the DC I-V characteristic of the junction. A power-law scaling behavior
of trapping probability versus quench rate is found with a critical exponent of 0.5 (within
experimental error). The main experimental challenges are to generate many identical quenches
with accurate cooling rate, to automate data analysis and acquisition, and to suppress external
magnetic fields and noise by passive magnetic shielding and compensation.

1. Introduction
The purpose of the project is to experimentally clarify the effects of non-adiabatic cooling
of physical systems through continuous phase transitions. Because all phase transitions are
completed within a finite time, causality ensures that the correlation lengths in the system
remain finite - even for continuous phase transitions. This reflects the fact that a growing
domain represents information transfer from its initial seed to the media around it, and as
such is ultimately limited by the information velocity in the medium. The Kibble-Zurek (KZ)
scenario [1, 2, 3] proposes that this maximum velocity of domain boundaries is also the actual
velocity, thus predicting that the final domain structure directly reflects the causal horizons of
each nucleation site. This prediction is directly available for experimental verification in systems
in which the domain boundaries carry a topological charge.

As a solid state model system, the annular Josephson tunnel junction has been selected.
Josephson tunnel junctions(JTJs) in general have fluxons as topological defects carrying the
topological charge i.e., a supercurrent vortex carrying magnetic flux Φ0 = h/2e in the plane
of the oxide layer between the two superconductors that make up the JTJ. For the annular
geometry considered in this paper, this corresponds to a magnetic flux line threading either one
of the superconducting annuli making up the junction an odd number of times. The motivation
for using long annular Josephson junctions is that - because of the annular geometry - any



fluxons created during the quench, will be trapped in the junction until it is reheated, because
of the Meissner effect of the superconducting annuli. This is schematically illustrated in figure
1(a).

(a) Simplified illustration of a trapped fluxon in an
annular Josephson tunnel junction. It is seen that
the magnetic flux loop threads only one of the rings.

(b) Actual geometry of annular Josephson tunnel
junction no. 4, designated JJ4. The geometry of
no. 3 (JJ3) is similar, only the ground plane is
without circular hole.

Figure 1. Model and real geometry of the annular Josephson junctions. In both cases, the
perpendicular dimension is exagerated.

The creation of an fluxon, and thereby a closed, oriented magnetic loop, into the system is
an example of a spontaneous symmetry breaking event; the perpendicular up-down symmetry
of the system is broken by the directionality of the B-field. A key point to make is that the
symmetry-breaking mechanism itself (ie. the cooling) is symmetrical, and thus is not the direct
cause of the break in symmetry.

2. Theory
An idealised model was proposed in 2000 [4] to test the KZ scenario for annular JTJs, assuming
that causal horizons are constrained only by the velocity of electromagnetic waves in the junction,
the Swihart velocity [5, 6]. As a result, the probability f1 for spontaneously producing one
fluxon in the thermal quench of a symmetric annular Josephson junction of circumference C was
predicted to scale with the quench time τQ (the inverse quench rate) as
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where the scaling exponent σ depends on the system. In Eq.(1), ξ̄ is the Kibble-Zurek causal
length, the correlation length of the relative Josephson phase angle at the time of defect
formation. The relative Josephson phase angle is the space-dependent difference in phase
between the superconducting wavefunctions of the two rings making up the annular josephson
junction. The trapping probability is defined through Eq.(1) in terms of the zero-temperature
correlation length ξ0, the relaxation time τ0 of the long wavelength modes of the superconducting
wavefunction, and the quench time τQ, in turn defined by: TC/τQ = −(dT/dt)T=TC

. Eq.(1)
holds for C < ξ̄, where ξ̄ is the frozen-in correlation length, roughly equivalent to the size of
fluctuations in the superconducting wavefunction at the time of freezing. The probability f1

is the sum of the probabilities of all the different ways of threading the geometry by a closed
magnetic field loop, in such a way, that the field loop intersects the tunnel barrier oxide just
once, regardless of direction.



In theory, the creation of a fluxon with direction in through the oxide towards the center
of the annulus, and the creation of one with opposite direction should be equally probable.
However, because of the detection mechanism inherent to this setup, there is no obvious way
to discriminate between the two states. Using the current detection scheme (see section 3.3)
results in the same outcome regardsless of the directionality of the fluxon.

3. Measurements
The actual experimental procedure consists of a large number of heating-cooling-measurement
cycles for different cooling rates. For each cycle, the sample is electrically heated, passively
cooled without electrical connections and finally the actual detection takes place.

3.1. Thermal control
The thermal part of the cycle is performed by electrical heating by resistive strips in either end
of the sample, as seen in figure 2. In order to avoid electromagnetic noise induced by current
noise in the heaters, the heating pulse is mechanically switched off outside of the cryoprobe
during cooling and measurements. Cooling takes place passively through the helium exchange
gas (approximately 7-8 mbar of pressure) as well as through the copper sample holder. The
cooling rate can be controlled by the exchange gas pressure and the heating time. For longer
heating times, more of the copper sample holder is heated along with the silicon sample. This
gives a larger effective heat capacity of the total system, and thus a slower cool down.

Figure 2. Layout of one of the samples used in measurements. For this geometry, the four
junctions are numbered 1 through 4 from left to right. The dimensions of the whole sample
is 3mm by 4.2mm. The meander lines seen at either end of the sample are resistors used for
heating.

For slow quenches, a solid-state germanium resistor mounted in the copper sample holder
is used to determine τQ. However, for faster quenches, in which τQ is less than a few seconds,
thermal equilibrium is not obtained between the sample and the sample holder. For this, a much
faster thermometer is required. This is supplied by the device itself, as the Josephson junction
can be used as a transition edge thermometer in constant-current bias mode. The junction is
biased at 25-30% of the maximum gap current, and the voltage response as a function of time
is measured, see fig. 3(a). This can be directly converted into a temperature as long as T < TC

for the junction [10]. As τQ is decided by the time-derivative of the temperature of the device
at T = TC an extrapolation is performed to this using a simple thermal relaxation model. In
general, the fit to the thermal model is excellent (correllation coefficient, R2 > 0.98) as is seen
in fig. 3(b).



(a) Gap voltage of a DC current biased annular
Josephson junction as a function of time. Heating
is turned on at t=0s and off around t=0.02s

(b) Example of result of conversion of post-TC

part of the gap voltage graph to temperature.
The overlying line is the fit to a simple thermal
relaxation model.

Figure 3. Illustration of the thermometry measurements involved in the experiments. τQ can
be found from the slope of the fit in 3(b) at T = TC , which is 9.2K for these samples.

3.2. Magnetic shielding and compensation
The magnetic shielding is implemented using a combination of cryoperm and superconducting
shields. The cryostat has 2 layers of cryoperm built into it. The cryoprobe itself incorporates 3
more passive magnetic shields - first a superconducting Pb shield, then a cryoperm shield, and
finally another superconducting Pb shield. The alternation of cryoperm and superconducting
shields makes for a large suppression of both AC and DC magnetic fields.

In addition a superconducting coil has been built around the sample for compensation. The
general approach to compensating magnetic fields is to assume the field is low. It is assumed
that in this limit, any increase in B-field strength will increase trapping probability through
induced trapping. Therefore, the compensation magnetic field, perpendicular to the sample, can
be calibrated to the nearest minimum in fluxon trapping probability. A thorough theoretical
treatment of this is in preparation [9].

3.3. Detection
The detection of trapped fluxons in the annular Josephson junction is performed by detection
of zero-field steps. These are generated by internal resonances in the junction only available in
the presence of trapped fluxons. For a theoretical description of this see [6, 7].

Zero-field steps in an annular Josephson junction can be seen in the DC I-V curve of the
junction as voltage steps at voltages decided by the geometry of the junction itself. For the
junctions in question, the voltages of the first zero-field step are on the order of a few to several
tens of microvolts. The detection of zero-field steps is performed by an algorithm developed for
the purpose. Detection accuracy is ¿95% measured against manual evaluation of the I-V curves.

4. Results
As expected, a minimum fairly close to zero is seen in the dependence of trapping rate, f , on
B-field strength (fig. 4). However, the side peaks were not expected. It is seen, that when
the magnetic field reaches a certain value, the trapping rate decreases with increasing magnetic
field. This somewhat counterintuitive behaviour is currently being incorporated into a unified
model of the KZ effect in the presence of a pre-existing symmetry-breaking field, and a paper is
in preparation [9].



Figure 4. The variation of trapping rate with magnetic field. The central minimum is clearly
expressed, as well as two side peaks.

Figure 5. A clear, systematic scaling of single-fluxon trapping probability as a function of
quench time is found. The critical exponent is 0.51± 0.03.

The main result of the experiments is shown on figure 5. It represents the condensation of
a few 100.000 thermal quenches. The points are very closely distributed around the prediction
of eq. (1). The different markers indicate different samples and/or junctions used. They are,
however, all of the same basic geometry as shown in figure 2.

5. Discussion
In order for this system to be a good model for a general continuous phase transition a number of
high-level assumptions were made: (1) The phase transition of the annular Josephson junction



is continuous, (2) The temperature is at all times approximately constant over a length larger
than the dimensions of the junction, (3) The perpendicular symmetry of the junction is not
broken by residual magnetic fields.

It is possible to question all of the above assumptions on different grounds. The first
assumption requires that there is no latent heat involved in the phase transition. This is true for
bulk superconductor in zero magnetic field. However, for a multiply connected superconductor,
such as an annulus, in which a magnetic flux loop is spontaneously generated, this is only
approximately true. The kinetic energy of the cooper pairs in the screening current in the
annulus should be taken into account as a rather exotic form of latent heat, if a fluxon is
trapped, and it turns out that this energy is on the same order as the thermal energy kBT
at the transition. The second assumption is essentially a question of the timescales involved
in the heating as compared to the heat transfer along the sample from the heaters on either
end. If the time constant for heat transfer along the length of the sample is significantly lower
than the quench time, τQ, the assumption is fulfilled. This can be verified by either heat-
flow simulations or analytical approximations. Finally, the third assumption seems to be the
hardest to fulfill. One has to find a logical limit to how much magnetic field should be allowed,
without expecting it to interfere with the phase transition. The simplest choice is to require
the magnetic flux through the ring to be significantly less than one magnetic flux quantum per
ring area, B < Φ0/Aring = h/2e

C2/4π
. This has been tested by placing a SQUID device of higher

sensitivity in the immediate vicinity of the sample. The SQUID has been rotated to measure
the absolute value of the B-field as well as the noise level, and both have been seen to be below
this limit. One final note should be to mention that the pulsed current running through the
heaters will induce an oscillating magnetic field in the coil, and should therefore be temporally
separated from the phase transition by a time larger than a few times the relaxation time of the
coil system.

6. Conclusion
It has been shown that the probability of trapping a fluxon in an annular Josephson tunneling
junction scales with a power law dependence on the inverse cooling rate at the time of transition
in good agreement with the prediction of Zurek [1, 2]. In particular the critical exponent of
this system is 0.5 to a great accuracy. It has been shown on different samples and on annular
junctions of different sizes and detailed geometry.

This experiment remains to this day the only solid-state experiment to show reliable Kibble-
Zurek scaling behaviour.
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