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The submm wave Josephson Flux Flow Oscillator;
linewidth measurements and simple theory

J. Mygind, V.P. Koshelets, M.R. Samuelsen, and A.S. Sobolev

Abstract— The Flux Flow Oscillator (FFO) is a long Josephson
junction in which a DC bias current and a DC magnetic
field maintain a unidirectional viscous flow of magnetic flux
quanta. The theoretical linewidth of the electromagnetic radiation
generated at the end boundary is due to internal current fluctu-
ations as given by the usual expression for the lumped junction.
Experimentally, however, the linewidth deviates significantly both
in magnitude and functional dependence. We suggest a simple
solution based on the assumption that the bias current creates
an additional magnetic field in the junction. This is supported
by linewidth measurements on FFOs subjected to different bias
configurations.

Index Terms— Josephson junctions, submillimeter wave
oscillators, superconducting devices

I. INTRODUCTION

Theoretically the spectral linewidth ∆ν (full width half
power) of the lumped Josephson junction oscillator is given
by [1]

∆ν = π
R2

d

Φ2
0

SI(0), (1)

where Rd is the dynamic resistance in the bias point and
Φ0 = h/2e is the flux quantum. SI(0) is the power density of
the internal low frequency current fluctuations including both
thermal noise and shot noise [1]

SI(0) = 2e{Iqp coth v+2Is coth 2v} with v =
eV

2kBT
, (2)

where Iqp is the dc quasiparticle current and Is is the DC
superconducting pair current. T is the physical temperature.
Eq. (1) comes from standard frequency modulation theory and
the terms R2

d and φ2
0 originate in the basic transformation of a

current noise power spectrum to a voltage spectrum, and from
the voltage spectrum to a frequency spectrum, respectively.
The pair current term accounts for the fact that the junction
was coupled to a lossy resonator [1]. Eq. 2 was derived for a
tunnel junction DC biased at voltage V but a similar formula
may be obtained for an arbitrary bias source [2]. Deviations
from the assumed white noise spectrum may be included as
an effective temperature, Teff > T .

Generally Eq. (1) applies to most high-Tc and low-Tc

Josephson oscillators e.g. point contacts and micro bridges,

Manuscript received October 5, 2004. We thank C. Mahaini for collabora-
tion in the early stages of the project. The work was supported in part by the
RFBR project 03-02-16748, INTAS project 01-0367, ISTC project 2445, the
Danish Natural Science Foundation and the Hartmann Foundation.

J. Mygind and M.R. Samuelsen are with Department of Physics, B309,
Technical University of Denmark, DK-2800 Lyngby, Denmark (email
myg@fysik.dtu.dk)

V.P. Koshelets and A.S. Sobolev are with Institute of Radio Engineering
and Electronics (IREE), Moscow, Russia (email valery@hitec.cplire.ru)

short tunnel junctions, and resonant fluxon oscillators [3].
For well-characterized small tunnel junctions an observed
disagreement (pre-factor ≈ 2) between experiment and theory
can be accounted for by a modified current noise spectrum
(quantum effects). For some metallic weak links and high-Tc

junctions larger discrepancies (pre-factors of 2 to 100) have
been observed. The resonant fluxon (soliton) oscillator has an
extra pre-factor 1

4 because the fluxon-antifluxon reflection at
each boundary results in a 4π change of the phase difference
and thus to a modified Josephson frequency-phase relation.
All these Josephson oscillators need only a single DC bias,
usually supplied from a current source.

The Flux Flow Oscillator (FFO) differs from the other
members of the Josephson oscillator family by needing also an
external DC magnetic field e.g. from a current in a ”control”
line. Theoretically it has been shown [4], [5] that the linewidth
of an ideal FFO (i.e. with perfect overlap geometry and
constant bias current distribution) is also given by the lumped
junction expression Eq. (1). However, experimentally there
is a substantial discrepancy (up to a factor 10) between the
linewidth of real FFO’s and that calculated using Eq. (1). Also
a different functional dependence on Rd is found. This has
been a puzzling problem for almost a decade [4], [6], [7], [5],
[8]. In order to remedy the functional dependence and to obtain
agreement with Eqs. (1,2) it was first tried empirically [9],
[10] to include noise related to the control line current.
Although the procedure provides good fit to our experiments,
there is no theoretical justification for it. In fact, the implicit
assumption [10] that noise in the junction current and noise in
the control line current are fully correlated, implies that they
both originate in the internal current fluctuations.

II. SINE-GORDON MODEL WITH BOUNDARIES

In a simple picture the dynamics of the FFO is a unidi-
rectional viscous flow of mutually repulsive fluxons in a long
Josephson junction. The DC bias current, I , drives the fluxon
chain while the applied DC magnetic field from a current,
Icl, regulates the distance between the fluxons. Experimentally,
Icl flows in an integrated overlaying ”control” line, in one of
the junction electrodes, or in an external coil placed near the
junction. The average number of fluxons passing per second
gives the DC voltage, V , across the junction. Experimentally
both I and Icl may be used to tune the junction voltage
and thus the frequency of the FFO. Electromagnetic power
may be extracted from the end of the junction where the
fluxon chain collides with the boundary. In the frequency
range 100-700GHz it has been demonstrated that a standard
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Nb/Al2O3/Nb FFO can produce about 1µW, which is sufficient
to pump an SIS mixer integrated on the same chip [11].

Using normalized units a long (length l) and narrow (width
w) (rectangular) Josephson junction biased from a DC current
supply is well modelled by the one-dimensional (l À w, w ¿
1) perturbed sine-Gordon equation [3] φxx − φtt = sin φ +
αφt − η for the phase difference φ across the junction.
The normalized overlap current through the junction is η
and α is the normalized damping. Time t is normalized to
the inverse maximum plasma frequency, ω0, length x to the
Josephson penetration length, λJ , currents to the maximum
critical current, Ic, and magnetic field to JcλJ , where Jc is
the critical current density, and Hc = 2JcλJ is the critical
field needed to force the first fluxon into the junction.

The normalized magnetic field κ1,2 at the two ends of the
junction enters as the boundary condition

φx(0, t) = κ1 and φx(l, t) = κ2. (3)

We assume that the field is in the plane of the junction and
perpendicular to the x-direction. The total normalized current
through the junction is

i = iov + iin = w(ηl + κ2 − κ1), (4)

where iov = ηwl = (
∫ l

0
w(x)η(x)dx) is the normalized

overlap current, (κ2 − κ1)w = iin is the inline part of the
normalized junction current, and

κ = (κ1 + κ2)/2 (5)

is the normalized magnetic field. The overlap fraction of the
junction current is [12]

χ =
iov

iin + iov
. (6)

The notation overlap and inline refers to the two idealized
geometries for the long rectangular junction, where the DC
bias current enters and leaves via the two long boundaries, or
via the two narrow end boundaries, respectively.

The normalized DC I-V curve is given by

ω = ω(η, κ1, κ2) = ω(i, κ), (7)

where ω =< φt > is the time average voltage across the
junction. The I-V curve of a long low-damped overlap junction
with homogeneous current distribution (χ = 1, η(x) constant)
exhibits a very distinct step structure [13] with small dynamic
resistance. Generally, both an inhomogeneous overlap current
distribution (η(x)) and/or some additional inline current supply
(χ < 1) will alter the appearance of the structure. Higher
damping broadens the structure and eventually turns it into
the so-called flux flow step (FFS). For fixed bias current the
voltage of the FFS is proportional to the magnetic field [13].

Until now we have discussed an ideal (”bare”) junction
where i and κ are independent variables with i proportional
to the externally applied DC bias current I and κ proportional
to the DC current Icl in the control line. For later use we
define two normalized dynamic resistances rd and rκ

d as partial
derivatives of Eq. (7) with respect to the bias and control line
current, respectively;

rd =
∂ω

∂i
, rκ

d =
∂ω

∂κ

1
w

, (8)

where the dynamic resistance rκ
d is derived from the current

wκ equivalent to the magnetic field κ. The dynamic resistance,
rd, inserted (in unnormalized units) in Eq. (1) gives the
linewidth of the ”bare” FFO [4], [5].

III. MAGNETIC FIELD GENERATED BY THE BIAS CURRENT

Now we consider the case where the external bias current
generates a magnetic field in the junction. We assume that
the normalized magnetic field in the junction consists of two
contributions, an externally applied field: κappl = βicl

1
w

proportional to a DC current, icl, in the control line, and a
field: −σi proportional to the external DC bias current, i. As
exemplified below the latter may be due to asymmetry of the
junction and the way the bias current is fed to the junction.

κw = κapplw − σi = βicl − σi. (9)

Here β and σ are dimensionless factors determined by junction
geometry and bias conditions. Now the measured normalized
I-V curve is

ω = ω(i, βicl − σi), (10)

and correspondingly the measured normalized dynamical re-
sistance is

r′d =
dω

di

∣∣∣∣
icl

=
∂ω

∂i
+

∂ω

∂κ

1
w

(−σ) = rd − σrκ
d . (11)

We define a normalized control line dynamical resistance as

rcl
d =

dω

dicl

∣∣∣∣
i

=
∂ω

∂κ

1
w

β = βrκ
d . (12)

i.e. the measured control line dynamical resistance (rcl
d )′ is

the same as before (rcl
d )′ = rcl

d . The normalized dynamic
resistance, rd, entering the linewidth expression Eq. (1) for the
”bare” FFO is related to the measured dynamic resistances by

rd = r′d +
σ

β
(rcl

d )′ = r′d + K(rcl
d )′, (13)

where K = σ
β is the ratio between the two geometrical

factors; σ for the external bias current and β for the external
control line current. If the measured dynamical resistances as
introduced in Eq. (13) are returned (in unnormalized units) to
Eq. (1) the linewidth expression is replaced by

∆ν = π
(R′d + KRcl

d )2

φ2
0

SI(0), (14)

which contains just the empirical correction factor (R′d +
KRcl

d )2 used by Koshelets et al. [9] instead of (Rd)2 to obtain
a good fit to Eqs. (1,2) with K as fitting parameter. With their
particular junction layout the best fit was achieved for K ' 1.

All quantities in Eq. (14) can be measured with good
accuracy. In a given bias point the free-running linewidth
is measured with the FFO frequency-locked (by a frequency
discriminator circuit) to a 400MHz reference using an on-chip
integrated SIS junction as external harmonic mixer to down-
convert the 100-700GHz signal so that it can be recorded with
a spectrum analyzer [8]. The corresponding two measured dy-
namical resistances (Rd)′ = ∆V

∆I and (Rcl
d )′ = (Rcl

d ) = ∆V
∆Icl

are calculated from the small voltage change ∆V found when
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Fig. 1. Sketch showing how the real FFO I-V curve (thick full line) may
be constructed if one knew the I-V curves of the ideal (”bare”) junction, here
represented by the three thin curves corresponding to three different control
line currents (icl1 > icl2 > icl3). A positive sign of K = σ

β
(see Eq. (13))

is used, so that the magnetic field from the bias current makes the measured
I-V curve steeper. For large K-values the I-V curve may have a measured
dynamic resistance R′d ≤ 0.

we increment the two currents by ∆I and ∆Icl, respectively.
The voltage change ∆V is determined by measuring the
frequency shift of the emitted radiation. Since the uncertainty
of the incremental currents ∆I and ∆Icl can be reduced by
averaging, the uncertainty of the dynamic resistances is dom-
inated by the voltage (frequency) measurement uncertainty,
which is less than ∼ 5nV (corresponding to ∼ 10MHz). On
the steep structures (Fiske steps) in the I-V curve the free-
running linewidth is of the order 100kHz.

As mentioned above the I-V curve Eq. (7) of the ”bare”
junction depends on the distribution of the junction current i
- i.e. on the dependence of η(x) on x. Over the years several
attempts have been made to reduce the linewidth by modifying
the physical shape of the junction and of the superconducting
electrodes near the junction, e.g. using a so-called ”unbiased
tail” as modelled by various current distributions [14], [15],
[16]. From Eq. (14) and Fig. 1 it is obvious that a small value
of the measured dynamic resistance R′d in a real FFO not
necessarily implies a narrow linewidth. This is only true for
the ideal (”bare”) junction with K = 0. This mistake seems
to have been carried over from the lumped junction scenario
for over twenty years.

Looking at Fig. 1 one can obtain a situation where the
measured FFO I-V curve has a negative value of the dynamic
resistance R′d. Such ”back-bending” has been observed both
experimentally and in our numerical simulations based on
the sine-Gordon model. In a bias point where R′d = 0 the
measured FFO linewidth is solely due to internal bias current
fluctuations conveyed via the K factor.

IV. K-VALUES FOR DIFFERENT BIAS GEOMETRIES

Recently, linewidth measurements as described above have
also been performed on a given FFO subjected to different bias
configurations in order to explore the corresponding K-values.
On the test chip we have a tri-layer Nb-AlOx-Nb structure with
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Fig. 2. Measured linewidth versus dynamic resistance for a given FFO with
fixed bias current in two different bias configurations a) and b) (see text). The
best fit to Eq. (14) (full curve) is obtained with K = +0.25 and K = −1.1,
respectively. Frequency range 490-710GHz. T =4.2K

accessible contact pads. In the usual bias configuration (near-
overlap geometry) the DC bias current I is supplied through
the junction from the bottom Nb-film to the top Nb-film,
and the control current Icl (flowing in the bottom Nb-film)
generates a magnetic field which is dominantly perpendicular
to the long junction dimension. In this bias configuration
the flux flow is in the Icl direction and K ≈ 0 yields the
best fit to Eq. (14). If we maintain the Icl flowing in the
bottom film there are two other ways to supply the bias
current I . Either we can connect the input DC bias lead to
the Icl output pad (configuration a) or to the Icl input pad
(configuration b) and thus obtain two radically different bias
geometries (see the ideal examples below). As shown in Fig. 2
the best fit to Eq. (14) in configuration a) is obtained for
K = +0.25 while in configuration b) we get the best fit for
K = −1.1. The dependence of the K-values on the geometry
supports our simple theory. Here we have only presented
typical results measured for fixed bias current in the frequency
range 490-710GHz at T = 4.2K on a single FFO junction
having RnS = 37Ω(µm)2 (product of normal state resistance
and junction area). An extensive study where also an extra
external magnetic bias current may be supplied from additional
superconducting control lines will be published elsewhere.
These measurements indicate that a more elaborate theory is
needed in order to explain the complicated dynamics in FFOs
with smaller RnS values.

V. GENERAL CASE, IDEAL EXAMPLES

In general for a given geometry we can write

wκ1 = σ1i + β1icl

wκ2 = σ2i + β2icl

ηwl = σ3i + β3icl.

From Eq. (4) we get σ2−σ1+σ3 = 1 and β2−β1+β3 = 0
where σ2− σ1 is just the inline fraction 1−χ of the junction
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current and σ3 is the overlap fraction χ. From Eq. (5) we get

κ =
σ1 + σ2

2
i +

β1 + β2

2
icl.

This should be identical to Eq. (9) therefore we have

−σ = (σ1 + σ2)/2 and β = (β1 + β2)/2. (15)

It is clear that σ can be ascribed to an asymmetric feed of
the junction. K = σ

β = 1 means that the bias current i
and the control line current icl (if equal) produce the same
magnetic field. The situation is illustrated by three (ideal)
examples which can be analyzed analytically. We assume
that the external currents i and icl follow the same path
on one side of the tunnel junction, that the magnetic field
along every edge of the oxide layer is constant, and that the
superconducting electrodes (Nb-films) are much thicker than
the London penetration depth so currents flow in a very thin
layer in the top and bottom of the films.

i  

icl

i    + icl           

i    + icl           

i  

icl

(a)

(b)

Fig. 3. Illustration of example 2, half inline; a) K = 1
2

, χ = 1
2

. b) K = 1,
χ = 1

2
. The figure is not to scale. In the superconducting thin-films currents

flow with equal magnitude in top and bottom of the film

1) Pure overlap. If the bias current i is purely overlap
(χ = 1) there is no asymmetry in the bias current, therefore
σ = 0 and K = 0.

2) Half inline. In the half inline case (χ = 1
2 ) there are two

different cases. 2a) The first situation is depicted in Fig. 3a.
Simple considerations give

σ2 ' σ3 ' 1
2
, β2 = β1 =

1
2
, and σ1 ' β3 ' 0,

or β = 1
2 and σ = 1

4 and therefore K = 1
2 . 2b) The other

situation with half inline is shown in Fig. 3b. Here

σ2 ' σ3 ' β1 ' β3 ' 1
2

and σ1 ' β2 ' 0,

or β = 1
4 and σ = 1

4 and therefore K = 1.
3) Pure inline. If the bias current is purely inline (χ = 0)

there are two cases. Let icl flow in the bottom film. If i flows
into one end of the junction from the bottom film and leaves
the junction through the top film and the other end of the
junction (Fig. 4a) there is no asymmetry in the current, β = 1

2
therefore σ = 0 and K = 0. If the bias current i leaves the
junction from the same end as it enters (Fig. 4b) the asymmetry
in the current is σ = 1

2 , β = 1
2 and therefore K = 1.

(a)
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Fig. 4. Illustration to example 3. Pure inline (χ = 0). The figure is not to
scale. The total current in each superconducting thin-film is the sum of the
currents flowing in the top and bottom of the film as indicated. The dashed
line indicates the tunnel barrier. Two cases; a) σ = 0 and therefore K = 0
and b) σ = 1

2
, β = 1

2
and therefore K = 1.
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