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The Flux Flow Oscillator is a long Josephson junction in which a DC bias current and a DC magnetic field
maintain a unidirectional viscous flow of magnetic flux quanta. The linewidth of the electromagnetic radiation
generated at the end boundary is theoretically given by the lumped junction expression. Experimentally, the
linewidth deviates significantly both in magnitude and functional dependence. This disagreement has been a
challenge for many years. We suggest a simple solution based on the assumption that the bias current creates an
additional magnetic field in the junction.
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INTRODUCTION

A Josephson junction inherently oscillates according to
the Josephson voltage-phase relation ∂φ

�
∂t ��� 2π

�
Φ0 � V � t � ,

where φ is the phase difference between the macroscopic wave
functions in the two superconductors forming the junction,
Φ0 � h

�
2e is the flux quantum, and V � t � is the instantaneous

voltage across the junction. When biased at a DC voltage VDC

the Josephson frequency is νJ ��� 1 � Φ0 � VDC, where the pre-
factor is � 484GHz/mV. With suitable electromagnetic cou-
pling to the environment high frequency radiation may be
emitted and the Josephson junction can be utilized as a tun-
able oscillator at millimeter and sub-millimeter wavelengths.

Theoretically the spectral linewidth ∆ν (FWHP, full width
half power) of the lumped Josephson junction oscillator is
given by [1, 2]

∆ν � π
R2

d

φ2
0

SI � 0 ��� (1)

where Rd is the dynamic resistance in the bias point. SI � 0 � is
the power density of the internal low frequency current fluc-
tuations including both thermal noise and shot noise [3]

SI � 0 � � 2e 	 Iqp cothv 
 2Is coth2v � with v � eV
2kBT � (2)

where Iqp is the quasiparticle current and Is is the supercon-
ducting pair current. T is the physical temperature. Eq. (1)
comes from standard frequency modulation theory and the
terms R2

d and φ2
0 originate in the basic transformation of a cur-

rent noise power spectrum to a voltage spectrum, and from the
voltage spectrum to a frequency spectrum, respectively. Orig-
inally Eq. 2 was derived for a tunnel junction voltage biased
at V but a similar formula may be obtained for the general
case of arbitrary source impedance [4]. The pair current term
accounts for the fact that the junction was coupled to a lossy
resonator [1, 5]. Deviations from the assumed ideal ”white”
current noise power spectrum may be included as an effective
temperature, Te f f � T .

Generally Eq. (1) applies to most both high-Tc and
low-Tc Josephson oscillators e.g. point contacts and micro

bridges [3], short tunnel junctions, and resonant fluxon os-
cillators [6]. For well-characterized small tunnel junctions an
observed difference (a pre-factor of less than 2) between the-
ory and experiment can be accounted for by a modified ba-
sic current noise power spectrum (quantum effects). For some
metallic weak links and high-Tc junctions larger discrepancies
(pre-factors of 2 to 100) have been observed. The resonant
fluxon (soliton) oscillator has an extra pre-factor 1

4 because
the (fluxon-antifluxon) reflection of a 2π-kink results in a 4π
change of the phase difference leading to a modified Joseph-
son frequency-phase relation. All these Josephson oscillators
need only a single DC bias, usually supplied from a current
source.

The Flux Flow Oscillator (FFO) differs from the other
members of the Josephson oscillator family by needing also
an applied DC magnetic field, usually generated by an ex-
ternal current in one of the junction electrodes or in a sepa-
rate ”control” line. Theoretically it has been shown [7, 10]
that the linewidth of the ideal (”bare”, see below) FFO also
is given by the lumped junction expression Eq. (1). However,
experimentally there is a substantial discrepancy (up to a fac-
tor 10) between the linewidth of real FFO’s and that calcu-
lated using Eq. (1). Also a different functional dependence on
Rd is found. This has been a puzzling problem for almost a
decade [7–11]. In order to remedy the functional dependence
and to obtain agreement with Eqs. (1,2) it has been tried in
an empirical manner [12, 13] to include noise related to the
control line current. Although the procedure provides good
fits to our experiments over a wide parameter range, there is
no theoretical justification for it. In fact, the implicit assump-
tion [13] that the current fluctuations in the junction and in the
control line are fully correlated, necessitates that the control
line noise also originates in the internal current fluctuations.

SINE-GORDON MODEL WITH BOUNDARIES

In a simple picture the dynamics of the FFO is a unidirec-
tional viscous flow of mutually repulsive fluxons in a one-
dimensional Josephson junction. The DC bias current, I,
drives the fluxon chain while the applied DC magnetic field
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from the current, Icl , regulates the distance between the flux-
ons. Electromagnetic power may be extracted from the end of
the junction where the fluxon chain collides with the bound-
ary. In the frequency range 100-700 GHz it has been demon-
strated that a standard Nb/Al2O3/Nb FFO can produce about
1µW, which is sufficient to pump an SIS mixer integrated on
the same chip [14].

Using normalized units a long (length l) and narrow (width
w) (rectangular) Josephson junction biased from a DC current
supply is well modelled by the one-dimensional (l � w � w �
1) perturbed sine-Gordon equation [6] φxx � φtt � sinφ 
 αφt �
η, where the normalized overlap current through the junction
is η and α is the normalized damping. Time t is normalized
to the inverse maximum plasma frequency, ω0, length x to the
Josephson penetration length, λJ , currents to the maximum
critical current, Ic, and magnetic fields to IcλJ which is half of
the critical field, Hc � 2IcλJ , needed to force the first fluxon
into the junction.

The normalized magnetic field κ1 � 2 at the two ends of the
junction enters as the boundary condition

φx � 0 � t � � κ1 and φx � l � t � � κ2 � (3)

We assume that the field is in the plane of the junction and
perpendicular to the x-direction. The total normalized current
through the junction is

i � iov 
 iin � w � ηl 
 κ2 � κ1 ��� (4)

where iov � ηwl � ��� l
0 w � x � η � x � dx � is the normalized overlap

current, � κ2 � κ1 � w � iin is the inline part of the normalized
junction current, and

κ � � κ1 
 κ2 � � 2 (5)

is the normalized magnetic field. The overlap fraction of the
junction current is [15]

χ � iov

iin 
 iov
� (6)

The notation overlap and inline refers to the two idealized ge-
ometries for the long rectangular junction, where the DC bias
current enters and leaves via the two long boundaries, or via
the two narrow end boundaries, respectively.

The normalized DC I-V curve is given by

ω � ω � η � κ1 � κ2 � � ω � i � κ ��� (7)

where ω ��� φt � is the time average voltage across the junc-
tion. The I-V curve of a long low-damped overlap junction
with homogeneous current distribution (χ � 1, η � x � constant)
exhibits a very distinct step structure [16] with small dynamic
resistance. Generally, both an inhomogeneous overlap current
distribution (η � x � ) and/or some additional inline current sup-
ply (χ � 1) will alter the appearance of the structure. Higher
damping broadens the structure and eventually turns it into
the so-called flux flow step (FFS). For fixed bias current the
voltage of the FFS is proportional to the magnetic field [16].

Until now we have discussed an ideal (”bare”) junction
where i and κ are independent variables with i proportional
to the externally applied DC bias current I and κ proportional
to the DC current Icl in the control line. For later use we de-
fine two normalized dynamic resistances rd and rκ

d as partial
derivatives of Eq. (7) with respect to the bias and control line
current, respectively;

rd � ∂ω
∂i � rκ

d � ∂ω
∂κ

1
w � (8)

where the dynamic resistance rκ
d is derived from the current

wκ equivalent to the magnetic field κ. The dynamic resis-
tance, rd , inserted (in unnormalized units) in Eq. (1) gives the
linewidth of the ”bare” FFO [7, 10].

MAGNETIC FIELD GENERATED BY THE BIAS CURRENT

Now we consider the case where the external bias current
generates a magnetic field in the junction. We assume that
the normalized magnetic field in the junction consists of two
contributions, an externally applied field: κappl � βicl

1
w pro-

portional to a DC current, icl , in the control line, and a field:
� σi proportional to the external DC bias current, i. As ex-
emplified below the latter may be due to asymmetry of the
junction and the way the bias current is fed to the junction.

κw � κapplw � σi � βicl � σi � (9)

Here β and σ are dimensionless factors determined by junc-
tion geometry and bias conditions. Now the measured nor-
malized I-V curve is

ω � ω � i � βicl � σi ��� (10)

and correspondingly the measured normalized dynamical re-
sistance is

r 	d � dω
di






icl

� ∂ω
∂i

 ∂ω

∂κ
1
w
� � σ � � rd � σrκ

d � (11)

We define a normalized control line dynamical resistance as

rcl
d �

dω
dicl






i
� ∂ω

∂κ
1
w

β � βrκ
d � (12)

i.e. the measured control line dynamical resistance � rcl
d � 	 is

the same as before � rcl
d � 	 � rcl

d . The normalized dynamic re-
sistance, rd , entering the linewidth expression Eq. (1) for the
”bare” FFO is related to the measured dynamic resistances by

rd � r 	d 
 σ
β
� rcl

d � 	 � r 	d 
 K � rcl
d � 	 � (13)

where K � σ
β is the ratio between the two geometrical fac-

tors; σ for the external bias current and β for the external
control line current. If the measured dynamical resistances
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FIG. 1: Sketch showing how the real FFO I-V curve (thick full line)
may be constructed if one knew the I-V curves of the ideal (”bare”)
junction, here represented by the three thin curves corresponding to
three different control line currents (icl1 � icl2 � icl3). A positive
sign of K � σ

β (see Eq. (13)) is used, so that the magnetic field from
the bias current makes the measured I-V curve steeper. For large K-
values the I-V curve may have a measured dynamic resistance r

�
d

�
0.

as introduced in Eq. (13) are returned (in unnormalized units)
to Eq. (1) the linewidth expression is replaced by

∆ν � π
� R 	d 
 KRcl

d � 2
φ2

0

SI � 0 � � (14)

The derived equation contains just the empirical correction
factor � R 	d 
 KRcl

d � 2 which was used by Koshelets et al. [12]
to obtain a good fit to Eqs. (1,2) with K as fitting parameter.
With their particular junction layout the best fit was achieved
with K � 1. In fact a later measurement with a different bias
configuration has given other K-values (K � 1 � . Our more
extensive measurements with other junction layouts will be
published elsewhere.

All quantities in Eq. (14) can be measured with good ac-
curacy. In a given bias point the free-running linewidth is
measured with the FFO frequency-locked (by a frequency dis-
criminator circuit) to a 400MHz reference using an on-chip
integrated SIS junction as external harmonic mixer to down-
convert the 100-700GHz signal so that it can be recorded with
a spectrum analyser [11]. The corresponding two measured
dynamical resistances � Rd � 	 � ∆V

∆I and � Rcl
d � 	 � � Rcl

d � � ∆V
∆Icl

are
calculated from the small voltage change ∆V found when we
increment the two currents by ∆I and ∆Icl , respectively. The
voltage change ∆V is determined by measuring the frequency
of the emitted radiation. Of course this measurement is done
without frequency lock and thus the spectral line will slowly
but erratically move on the spectrum analyser display due to
drift and temperature variations. Since the uncertainty of the
incremental currents ∆I and ∆Icl can be reduced by averag-
ing the dynamic resistances uncertainty is dominated by the
voltage (frequency) measurement uncertainty, which is less

than � 5nV (corresponding to � 10MHz). On the steep (Fiske
step) structure in the I-V curve the free-running linewidth is
of the order 100kHz.

As mentioned above the I-V curve Eq. (7) of the ”bare”
junction depends on the distribution of the junction current
i - i.e. on the dependence of of η � x � on x. Over the years
several attempts have been made to reduce the linewidth by
modifying the physical shape of the junction and of the su-
perconducting electrodes near the junction, e.g. using the so-
called ”unbiased tail” as modelled by various current distribu-
tions [17–19]. From Eq. (14) and Fig. 1 it is obvious that a
small value of the measured dynamic resistance R 	d in a real
FFO not necessarily implies a narrow linewidth. This is valid
only for K � 0 corresponding to the ideal (”bare”) junction.
This mistake seems to have been carried over from the lumped
junction scenario for over twenty years.

Looking at Fig. 1 one can obtain a situation where the real
(measured) FFO I-V curve have negative values of the mea-
sured dynamic resistance R 	d . Such ”back-bending” has been
observed both experimentally and in our numerical simula-
tions based on the sine-Gordon model. In the case where
R 	d � 0 in a given bias point the FFO linewidth measured here
is solely due to internal bias current fluctuations conveyed via
the K factor.

In conclusion, it is now clear that the spectral linewidth of
real FFO’s - contrary to the other Josephson oscillators in-
cluding the ideal (”bare”, K � 0) FFO - in general is not given
by the dynamic resistance of the measured DC I-V curve ie.
the long time average voltage V measured as function of the
external DC bias current, I, for fixed applied magnetic field
e.g. generated by an external current, Icl , in a control line.
Also the magnetic field generated by the external bias current
must be taken into account.

GENERAL CASE, EXAMPLES

In general for a given geometry we can write

wκ1 � σ1i 
 β1icl

wκ2 � σ2i 
 β2icl

ηwl � σ3i 
 β3icl �
From Eq. (4) we get

σ2 � σ1 
 σ3 � 1 and β2 � β1 
 β3 � 0 �
σ2 � σ1 is just the inline fraction 1 � χ of the junction current
and σ3 is the overlap fraction χ. From Eq. (5) we get

κ � σ1 
 σ2

2
i 
 β1 
 β2

2
icl �

This should be identical to Eq. (9) therefore we have

� σ � � σ1 
 σ2 � � 2 and β � � β1 
 β2 � � 2 � (15)

It is clear that σ can be ascribed to an asymmetric feed of the
junction. K � σ

β � 1 means that the bias current i and the
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i  

icl

i    + icl           

i    + icl           

i  

icl

(a)

(b)

FIG. 2: Illustration of example 2, half inline; a) K � σ
β � 1

2 , half

inline, χ � 1
2 . b) K � σ

β � 1, χ � 1
2 . The figure is not to scale. In

the superconducting thin-films currents flow with equal magnitude in
top and bottom of the film

control line current icl (if equal) produce the same magnetic
field. The situation is illustrated by three simple ideal exam-
ples which can be analyzed analytically. The external currents
i and icl follow the same path on one side of the tunnel junc-
tion. The electrodes are superconducting thin-films assumed
to be much thicker than the London penetration depth so the
current flow is in a very thin layer in the top and bottom of the
films.

1) Pure overlap. If the bias current i is purely overlap (χ �
1) there is no asymmetry in the bias current, therefore σ � 0
and K � 0.

2) Half inline. In the half inline case (χ � 1
2 ) there are

two different cases. 2a) First the situation in Fig. 2a. Simple
considerations give

σ2 � σ3 �
1
2 � β2 � β1 � 1

2 � and σ1 � β3 � 0 �

or β � 1
2 and σ � 1

4 and therefore K � 1
2 . 2b) The other situa-

tion with half inline is shown in Fig. 2b. Here

σ2 � σ3 � β1 � β3 �
1
2

and σ1 � β2 � 0 �

or β � 1
4 and σ � 1

4 and therefore K � 1.
3) Pure inline. If the bias current is purely inline (χ � 0)

there are two cases. Let icl flow in the bottom film. If i flows
into one end of the junction from the bottom film and leaves
the junction through the top film and the other end of the junc-
tion (Fig. 3a) there is no asymmetry in the current, β � 1

2
therefore σ � 0 and K � 0. If the bias current i leaves the
junction from the same end as it enters (Fig. 3b) the asymme-
try in the current is σ � 1

2 , β � 1
2 and therefore K � 1.

The work was supported in part by the RFBR project 03-
02-16748, INTAS project 01-0367, ISTS project 2445, the
Danish Natural Science Foundation and the Hartmann Foun-
dation.
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FIG. 3: Illustration to example 3. Pure inline (χ � 0). The figure is
not to scale. The total current in each superconducting thin-film is
the sum of the currents flowing in the top and bottom of the film as
indicated. The dashed line indicates the tunnel barrier. Two cases; a)
σ � 0 and therefore K � 0 and b) σ � 1

2 , β � 1
2 and therefore K � 1.
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