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Abstract—The Flux Flow Oscillator (FFO) is a long Joseph-son 

junction in which a DC bias current and a DC magnetic field 
maintain a unidirectional viscous flow of magnetic quanta 
(fluxons). Unlike most other Josephson oscillators the linewidth 
of the electromagnetic radiation generated when the fluxon chain 
collides with the end boundary is not given by the lumped 
junction expression. This disagreement has been a challenge for 
many years. We suggest a solution that at least partially explains 
the discrepancy using that the DC bias current creates an 
additional magnetic field in the junction.  

I. INTRODUCTION  
short Josephson junction biased at a DC voltage, VDC, 
inherently oscillates at the Josephson frequency νJ = 

(1/Φ0) VDC, where the pre-factor is about 484 GHz/mV and Φ0 
= h/(2e) is the flux quantum. Depending on the 
electromagnetic coupling to the environment radiation may be 
emitted and the junction can be utilized as a tunable oscillator 
at millimeter and sub-millimeter wavelengths.  

Theoretically the spectral linewidth ∆ν (FWHP, full width 
half power) of the short Josephson oscillator is determined by 
internal low frequency current fluctuations as [1,2]  
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where Rd is the dynamic resistance in the bias point. The terms 
Rd

2 and Φ0
2 come from a transformation from a current noise 

power spectrum to a voltage spectrum, and from the voltage 
spectrum to a frequency spectrum, respectively. SI(0) is the 
power density of low frequency current fluctuations [3] 

{ }(0)=2 coth( ) 2 coth(2 ) ,  =( ) /(2  )I qp s dc B effS e I v I v v eV k T+ (2) 

where Iqp is the quasiparticle current and Is is the 
superconducting pair current.  

Eqs. (1,2), which include both thermal noise and shot noise, 
were derived for a voltage biased tunnel junction but a similar 
formula may be obtained for the general case of arbitrary 
source impedance [4]. The pair current term accounts for the 
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fact that the junction was coupled to a lossy resonator [1]. 
Deviations from the assumed ideal "white" current noise 
power spectrum may be included as an effective temperature, 
Teff , somewhat larger than the physical temperature. With 
various prefactors Eqs (1,2) are valid for all kinds of both 
high-Tc and low-Tc Josephson oscillators including resonant 
fluxon oscillators [5].  

For the FFO which contrary to all the above-mentioned 
Josephson oscillators also needs an external magnetic bias 
there is a substantial discrepancy (up to a factor 10) between 
the linewidth measured experimentally and calculated using 
Eqs. (1,2). Also a different functional dependence on Rd is 
found. This has been a puzzling problem for almost a decade 
[6-10]. Practically, a DC current, Icl, in an integrated “control” 
line supplies the magnetic field. In order to obtain agreement 
with Eqs. (1,2) one has empirically tried [11,12] to include 
control line current noise using a modified dynamic resistance 
in Eq. (1) 

 2 ' 2( )cl

d d dR R K R= + ⋅ , (3) 

where ' /d bR V I= ∂ ∂  and /
cl

cl
dR V I= ∂ ∂ are the derivative of 

the measured voltage, V, with respect to the DC bias current, 
Ib, and Icl, respectively, and K is a constant of order unity. This 
provides good fits to our experiments, but there is no 
theoretical justification for it. Actually, an implicit assumption 
is that the fluctuations in the junction current and in the 
control line current are fully correlated, meaning that the 
control line noise originates from the internal current 
fluctuations (see below). 

II. SINE-GORDON MODEL WITH BOUNDARIES 
When biased from an ideal DC current supply the FFO is 

well modeled by the normalized one-dimensional perturbed 
sine-Gordon equation. See quantities and normalization e.g. in 
Ref. [5].  

The normalized magnetic field κ1,2 specifying the magnetic 
field at the two ends (x=0, and x=l) of the junction enters as 
the boundary condition for the phase difference φx(o,t)=κ1 and 
φx(l,t)=κ2, where the field is normalized to Ic λJ  which is half 
of the critical field, Hc = 2 Ic λJ, needed to force the first 
fluxon into the junction. Length, l, and width, w, is normalized 
to the Josephson penetration length, λJ, and currents to the 
maximum critical current, Ic. The total normalized current 
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through the junction is i=iov+iin= w (ηl+κ2-κ1), where iov=wηl 
is the overlap, iin=(κ2-κ1) is the inline part of the normalized 
junction current, and κ =(κ1+κ2)/2 is the normalized magnetic 
field, which we assume is applied in the plane of the junction 
perpendicular to the x-direction. 

The overlap fraction of the junction current is χ=iov/(iov+iin) 
[13]. The notation overlap and inline refers to the two 
idealized geometries for a long rectangular junction, where the 
DC bias current enters and leaves either via the two long 
boundaries, or via the two narrow end boundaries. 

The normalized DC I-V curve is given by  
ω=ω(i, κ)                                                                  (4) 

where ω=<φ(t)> is the time average voltage across the 
junction. For an ideal overlap geometry with homogeneous 
current distribution (χ=1, η constant) the I-V curve will 
exhibit a very distinct step structure [14] with small dynamic 
resistance. Generally, both an inhomogeneous overlap current 
distribution (η(x)) and/or some additional inline current 
supply (χ<1) will alter the appearance of the structures. In fact 
one can engineer the steepness of the structure elements e.g. 
using a so-called unbiased tail [15-17]. As above we define 
two normalized dynamic resistances by rd=∂ω/∂i and 
rd
κ=(1/w)∂ω/∂κ where the dynamic resistance rd

κ is derived 
from a current wκ equivalent to the magnetic field κ.. 

Until now everything relates to the ideal ("bare") junction 
where all partial derivatives are defined from Eq.(4) with i and 
κ as independent variables. 

III. MAGNETIC FIELD GENERATED BY THE BIAS CURRENT 
We now assume that the normalized magnetic field in the 

junction consists of two contributions; an externally applied 
field, κappl =β icl /w, proportional to a DC current, icl, in a 
control line, and a field, -σ i, proportional to the DC bias 
current, i, through the junction. The latter field may be due to 
asymmetry of the junction or the way the bias current is fed to 
the junction (see below). Thus 

κ w = κappl w -σ i =β icl  - σ i ,           (5) 
where β and σ are dimensionless factors determined by 
junction geometry and bias conditions. Now the measured 
normalized I-V curve is 

ω = ω(i, β icl - σ i),                (6) 
and correspondingly the measured normalized dynamical 
resistance rd’ is given by: 
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We define a normalized control line dynamical resistance 
rd

cl given by 
1
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i.e. the measured control line dynamical resistance ( cl
dr )´ is 

the same as before ( cl
dr )´= cl

dr . 

The normalized dynamic resistance, rd, entering the 
linewidth expression Eq.(1) for the ideal junction is related to 
the measured dynamic resistances by 

' '( ) ' ( ) 'cl cl
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= + = + ⋅ ,                             (9) 

where we have defined the ratio between the two geometrical 
current factors, σ for the bias current and β for the control line 
current as K=σ /β. 

With the measured dynamical resistances introduced as in 
Eqs.(7-9), and returning to unnormalized quantities, the 
linewidth expression contains just the empirical correction 
factor in Eq. (3) which was used by Koshelets et al. [11] to 
obtain good agreement by fitting. to Eq.(1) with K as fitting 
parameter. With their particular junction layout the best fit 
was achieved with K≈1. The results of new very extensive 
measurements with different junction configurations and 
geometries leading to other K-values (K<1) will be discussed.  

A lumped junction circuit with magnetic feed-back is used 
to demonstrate the basic problem. Finally, in order to illustrate 
the FFO situation we present three examples with pure 
overlap (χ =1, K=0), half-inline (χ=1/2, two cases: K=1/2 and 
K=1), and pure in-line (χ=0, two cases: K=0 and K=1) which 
may be analyzed analytically. 
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