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Abstract: Mixers based on superconductor–insulator–superconductor (SIS) tunnel junctions are the
best input devices at frequencies from 0.1 to 1.2 THz. This is explained by both the extremely high
nonlinearity of such elements and their extremely low intrinsic noise. Submicron tunnel junctions
are necessary to realize the ultimate parameters of SIS receivers, which are used as standard devices
on both ground and space radio telescopes around the world. The technology for manufacturing
submicron Nb–AlN–NbN tunnel junctions using electron-beam lithography was developed and
optimized. This article presents the results on the selection of the exposure dose, development time,
and plasma chemical etching parameters to obtain high-quality junctions (the ratio of the resistances
below and above the gap Rj/Rn). The use of a negative-resist ma-N 2400 with lower sensitivity
and better contrast in comparison with a negative-resist UVN 2300-0.5 improved the reproducibility
of the structure fabrication process. Submicron (area from 2.0 to 0.2 µm2) Nb–AlN–NbN tunnel
junctions with high current densities and quality parameters Rj/Rn > 15 were fabricated. The spread
of parameters of submicron tunnel structures across the substrate and the reproducibility of the
cycle-to-cycle process of tunnel structure fabrication were measured.

Keywords: electron-beam lithography; negative electronic resists; plasma chemical etching;
magnetron sputter deposition; superconducting tunnel structures; niobium-based high-quality
tunnel junctions

1. Introduction

One of the most successful areas of superconducting electronics is the development
of low-noise terahertz receivers [1,2]. The development of terahertz technologies and
the creation of SIS receivers with quantum sensitivity and THz radiation sources for use
in space- and ground-based radio telescopes are important tasks. Mixers based on SIS
tunnel junctions are the best input devices at frequencies f from 0.1 to 1.2 THz; their
noise temperatures are limited only by the quantum value hf /kB, where h and kB are the
Plank and Boltzmann constants, respectively [1–3]. Currently, heterodyne SIS receivers are
used as standard devices on most ground-based and space radio telescopes around the
world [4,5]. To implement the ultimate parameters of SIS mixers, it is necessary to create
and optimize a reproducible and reliable technology for the fabrication of nanostructures
with a tunnel barrier thickness on the order of 1 nm with an extremely high current density
and low leakage currents [6–8]. For operation at frequencies below 1 THz, tunnel junctions
with very high tunnel barrier transparencies are required. For the AlOx barrier, there is a
transparency limit corresponding to a current density of about 10–15 kA/cm2; at a higher
current density, the quality of the tunnel junction degrades significantly. The problem was
overcome by developing Nb–AlN–Nb tunnel junctions with rather good Rj/Rn > 15 at very
high current densities up to 100 kA/cm2 [9,10]. Replacing an Nb counter electrode with an
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NbN provides a significant improvement in the performance of the Nb–AlN–NbN SIS THz
mixer due to the much higher gap voltages [7,8]. To match the waveguide elements of the
high-current-density mixer with the receiving antenna, the area of the SIS junctions must
be substantially less than a square micrometer. Electron-beam lithography is one of the
most promising methods for the fabrication of nanostructures for research purposes since
it allows, within a short time, changing the design of both single selected elements and the
entire microcircuit and achieving high reproducibility in the submicron region of tunnel
junctions [11,12].

This article describes the technology of SIS tunnel structure fabrication of submicron
sizes using direct electron-beam lithography (EBL) and subsequent plasma chemical etch-
ing for the manufacture of high-quality tunnel structures with good reproducibility and
minimal deviation of parameters along the substrate. The SIS junction on silicon or quartz
substrate was formed by etching a three-layer Nb–AlN–NbN structure through a resist
mask formed using EBL. After fabrication of the tunnel junction using plasma chemical
etching, anodizing was carried out, and then an insulation layer of SiO2 was applied [13].
In the final stages, the counter NbN electrode and Au contact pads were formed. Each step
in the manufacturing of tunnel junctions was inspected using electron microscopy. Several
series of Nb–AlN–NbN tunnel junctions of submicron sizes with a current density of 20
to 50 kA/cm2 were fabricated. The reproducibility of the parameters of tunnel junctions
of submicron sizes over the substrate and the reproducibility of the process of fabricating
structures from cycle to cycle are demonstrated. The measurements were carried out using
an automated system for measuring the current–voltage characteristics and electrophysical
parameters of the SIS tunnel junctions IRTECON [14].

2. Materials and Methods
2.1. Sputtering Equipment and Technology Processes

The three-layer Nb–AlN–NbN structure was deposited using two high-vacuum sput-
tering plants: Kurt Lesker and Leybold L560UV (Leybold, Köln, Germany). The Leybold
L560UV is equipped with a water-cooled substrate holder, as well as two direct-current
(DC) and high-frequency (RF) magnetron sputtering systems. Kurt Lesker is a two-chamber
cluster system with a chamber equipped with four DC and two RF magnetron sputtering
systems, as well as an oxidation/nitridization chamber with an electron ion gun. The base
niobium electrode and a thin layer of aluminum were deposited by DC magnetron sputter-
ing in an argon atmosphere. After the deposition of the barrier aluminum, the substrate
was placed over an RF magnetron, on which a target with aluminum was attached, and
a plasma discharge was initiated in a nitrogen atmosphere [15]. The choice of the AlNx
barrier is due to the fact that the AlOx barrier degrades at RnS values of about 20 Ω·µm2

or less, which leads to a deterioration in the current–voltage characteristics [16]. Another
important advantage of the AlNx barrier is the possibility of using NbN as the counter
electrode of the tunneling structure, which makes it possible to increase the gap voltage of
the junction to 3.7 mV, thereby significantly increasing the upper frequency limit of the op-
eration of microwave devices [17]. At the end of the nitridization process, the counter NbN
electrode was deposited on the tunnel barrier, which was formed by DC magnetron sput-
tering in argon and nitrogen. The workflow for the formation of the three-layer structure is
shown in Table 1.

Table 1. Formation of the three-layer structure in a single vacuum cycle (Leybold L560UV).

Material Description Thickness, nm Deposition Parameters

Nb Base electrode 200 DC, 600 W, Ar, 4 mTorr, 1.8 nm/s
Al Tunnel barrier 6 DC, 100 W, Ar, 3 mTorr, 0.13 nm/s

AlN Tunnel barrier 1.0–1.2 RF, 70 W, N2, 0.03 mTorr
NbN Counter electrode 80 DC, 600 W, Ar + N2, 4 mTorr, 1.4 nm/s
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The fabrication procedure given in the Table 1 was the same as for Nb/AlN/Nb
junctions except for the NbN counter electrode [8]. The NbN film was deposited by DC
reactive magnetron sputtering using an Ar + 9% N2 gas mixture.

2.2. Electron-Beam Lithography

To study the manufacturing process of submicron junctions, test samples were pre-
pared. The array of circular structures was formed in various modes of electron-beam
exposure, development, and plasma chemical etching, as shown in Figure 1, separated by
a distance exceeding the proximity effect [12]. To avoid possible problems with the resist
heating effect, a minimum aperture and a defocused beam were used for exposure [18,19].
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Figure 1. Array of structures for testing the process of fabrication submicron-sized tunnel junctions.
The sample was located at an angle to the axis of the electron microscope probe.

Various types of negative resist were used to shape the geometry of the tunnel junc-
tions. The negative resist UVN 2300-0.5 is characterized by high sensitivity and is used for
both photolithography (DUV, 248 nm) and electron-beam lithography [20,21]. The negative
electronic resist UVN 2300-0.5 was deposited on the already formed three-layer Nb–AlN–
NbN structure. The resist was then baked at 90 ◦C for 10 min. The thickness of the resistive
film was 0.38 µm. Electron-beam exposure was carried out on a Raith e_Line electron
lithography system with an accelerating voltage of 30 keV; the resist dose was varied
depending on the junction size, ranging from 8 to 20 µC/cm2 [22,23]. After exposure, the
samples were baked at 110 ◦C for 10 min. Unexposed resist areas were then removed in a
2.4% solution of tetramethylammonium hydroxide pentahydrate (TMAH). The negative
resist UVN 2300-0.5 has a low contrast; thus, the technological process is quite sensitive to
deviations, which affects the reproducibility of the results. When using the UVN 2300-0.5
resist, the doses for tunnel junctions were selected depending on the size of the tunnel
junction: a dose of 10 µC/cm2 is optimal for structures with dimensions of 2.0 and 1.5 µm;
a dose of 15 µC/cm2 is optimal for structures 0.7–1.0 µm; a dose of 20 µC/cm2 is optimal
for structures 0.4–0.6 µm. Thus, tunnel junctions with an area of up to 0.15 µm2 were
fabricated and measured.

To increase the reproducibility of the technology for manufacturing tunnel junctions,
the electronic resist ma-N 2400 was tested [24]. The negative resist ma-N 2400 is used for
both photolithography (DUV, 248 nm) and electron-beam lithography, but the sensitivity
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of this resist is an order of magnitude lower than that of UVN 2300-0.5; therefore, for
structures with submicron sizes, the resolution of ma-N 2400 will be higher. A negative
e-beam resist ma-N 2400 was deposited on an already formed three-layer Nb–AlN–NbN
structure. After application, the resist was baked at 90 ◦C for 3 min. The dose for EBL was
varied, ranging from 110 to 275 µC/cm2. The unexposed areas of the resist were removed
in 2.4% TMAH solution.

To increase the resistance of the resistive mask to etching, the samples were heated to
100 ◦C for 10 min after development [25].

2.3. Plasma Chemical Etching

Tunnel junctions were formed by plasma chemical etching of NbN over a resist mask
using two different plasma chemical etching plants: in the vacuum chamber of a Secon XPE
II plasma chemical etching unit in an SF6 atmosphere (Figure 2) and in a mixture of O2 and
CF4 gases using a March Jupiter II plasma chemical etching unit (Figure 3). An additional
NbN sample, identical in thickness and geometry to the main Nb–AlN–NbN sample, was
placed in the plasma chemical etching unit to control the etching process [26]. The etching
time of the NbN layer was determined from the etching process of this NbN test sample
and ranged from 100 to 120 s. After the NbN layer visually disappeared on this NbN test
sample, the Nb–AlN–NbN sample was etched for an additional 15% of the etching time,
since the thin NbN layer was visually transparent. For the Nb–AlN–NbN sample, the
etching process stopped at the AlN layer, which is the stop layer for the etching process.
To achieve high reproducibility and small deviations of parameters, the etching process
was studied, and the optimal conditions for anisotropic chemical etching of the NbN film
with a minimum reproducible undercut were found. For plasma chemical etching on a
Secon XPE II unit in an SF6 atmosphere, the following parameters were used: isotropic
plasma chemical etching (PE); power, 200 W; flow SF6, 10 sccm; pressure, 2.0 × 10−1 mbar.
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Figure 2. The ma-N 2400 resist film with a diameter of 1 µm, exposed at a dose of 275 µC/cm2 after
plasma chemical etching in an SF6 atmosphere. The diameter of the NbN layer of the three-layer
structure is 1.02 µm corresponding to the planned size. Inset in the upper-right corner: tunnel
junction after applying SiO2 insulation and liftoff.
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Figure 3. The ma-N 2400 resist film with a diameter of 0.4 µm, exposed at a dose of 275 µC/cm2

after plasma chemical etching in a CF4 atmosphere. Inset in the upper-right corner: the sample after
etching in the CF4 + O2 atmosphere with nonoptimal parameters. In both cases, the diameter of the
resist after etching was 0.33 µm.

Figure 4 shows photographs taken from an electron microscope for a UVN 2300-
0.5 sample with a diameter of 0.4 µm. The resist profile was significantly different from the
vertical axis (insufficient contrast UVN 2300-0.5); the diameters of the resistive mask and
three-layer structure differed significantly from the design size.
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after plasma chemical etching with a resist mask in a CF4 atmosphere. The diameter of the resistive
mask after etching was 0.46 µm; the diameter of the three-layer structure was 0.51 µm.
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2.4. Anodization

After plasma chemical etching, anodization was carried out in an electrolyte solution
of ammonium tetraborate with glycol; as a result, the niobium nitride film, not covered by
the resist, was transformed into anodic oxide [27]. Anodization was carried out up to a
voltage of 8–10 V at currents of 100–200 µA. Next, a layer of SiO2 insulator was applied
(Figure 2).

The final technological stages were the formation of the counter NbN electrode and
Au contact pads using photolithography with a AZ 5214 photoresist (Figure 5).
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Figure 5. SEM photo of the SIS junction after deposition of the counter NbN electrode.

3. Experimental Results

Several series of Nb–AlN–NbN tunnel junctions of submicron sizes with a current
density of 20 to 50 kA/cm2 were fabricated.

The use of the negative resist ma-N 2400 (solid line in Figure 6), with lower sensitivity
and better contrast in comparison with UVN 2300-0.5, increased the reproducibility of the
tunnel junction fabrication process.

The negative-resist ma-N 2400 had a sensitivity that was one order of magnitude lower
than that of UVN 2300-0.5 and had a better contrast. As can be seen from the measurement
data (solid curves in Figure 6), for exposure doses of 220 and 275 µC/cm2, the size drifts
were constant (in contrast to the UVN 2300-0.5 resist) and were practically absent in the
entire measurement range from 1.0 to 0.1 µm.

To achieve high reproducibility and small deviations of parameters, the plasma chem-
ical etching process was studied using electron microscopy, and the optimal conditions for
anisotropic chemical etching of the NbN film with a minimum reproducible undercut were
found (Figure 7). Etching in an SF6 atmosphere showed better reproducibility of structures
from cycle to cycle with higher-quality tunnel junctions.
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Figure 6. Deviation of the size of tunnel junctions during exposure and development (TMAH 2.4%,
time 60 s) for ma-N 2400 and UVN 2300-0.5 resists. The horizontal axis is the planned diameter. The
vertical axis is the difference in the diameter of the structures measured with an electron microscope
minus the design value. Positive values correspond to a larger diameter than planned.
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Figure 7. Plasma chemical etching of samples in an SF6 atmosphere. For the left sample, the etching
time was 30 s; for the sample in the center, it was 45 s; for the right sample, it was 60 s.

The measurements were carried out using an automated system for measuring the
current–voltage characteristics and electrophysical parameters of the SIS tunnel junctions
IRTECON [14]. A data acquisition system for the Integrated Receiver Test and Control
(IRTECON) was developed for automated measurements and control of a single-chip
superconducting integrated receiver for the Terahertz Limb Sounder (TELIS) balloon
project intended to measure a variety of stratosphere trace gases [28]. The IRTECON
system was used in many laboratories over the world to study and control the SIS receivers,
particularly for advanced tuning and diagnostic of the ALMA Band 5 receiver channel [29].
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For the current–voltage characteristics of Nb–AlN–NbN tunnel junctions of the same
size, located both on different substrates and on different parts of the same substrate, similar
parameters were demonstrated. Figure 8 shows the I–V characteristics of Nb–AlN–NbN
tunnel junctions of the same size, located on different parts of the same substrate.
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Figure 8. I–V characteristics of Nb–AlN–NbN junctions of the same size, fabricated using EBL and
plasma chemical etching in a CF4 atmosphere, located on different parts of the same substrate: SIS
#8 with an area of 0.480 µm2 with a current density of 15 kA/cm2, Rn = 40.98 Ω, Rj/Rn = 18.4,
Vg = 3.39 mV; SIS #12 with an area of 0.488 µm2 with a current density of 15 kA/cm2, Rn = 40.34 Ω,
Rj/Rn = 20.7, Vg = 3.38 mV.

The measurements were carried out on tunnel junctions with an area of up to 0.15 µm2;
the quality of the junctions did not degrade with decreasing sizes (Figure 9). Figure 10
shows the I–V characteristics of Nb–AlN–NbN tunnel junctions of the same size located on
different substrates.

To realize a quantum-limited performance of the SIS mixers at sub-THz frequencies,
tunnel junctions with very high tunnel current density are required. To achieve proper
matching between such junctions and the receiving antenna, submicron SIS junctions were
implemented [28,30–33]. SIS mixers have already been successfully used for both space
missions and ground-based telescopes (TELIS, CHAMP) [7,30–32]. Up to now, SIS junctions
with an area down to 0.5 µm2 have been fabricated by conventional photolithography
processes. To improve the performance and the yield of SIS mixers and to ensure equality
of the SIS junctions in the twin mixer circuits [32,33], implementation of electron-beam
lithography is highly desirable. This is especially important for the development of SIS
array receivers and the further increase in the SIS operating frequency above 1 THz.
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Figure 9. I–V characteristics of the Nb–AlN–NbN junction with an area of 0.15 µm2 with a current
density of 47 kA/cm2, Rn = 34.53 Ω, Rj/Rn = 21.1, Vg = 3.36 mV fabricated using EBL and plasma
chemical etching in a CF4 atmosphere.
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Figure 10. I–V characteristics of Nb–AlN–NbN junctions of the same size, fabricated using EBL
and plasma chemical etching in an SF6 atmosphere, located both on different substrates and on
different parts of the same substrate: SIS #12j01 (area 0.732 µm2 with a current density of 25 kA/cm2,
Rn = 15.22 Ω, Rj/Rn = 38.1, Vg = 3.51 mV); SIS #12j12 (area 0.735 µm2 with a current density of
23.2 kA/cm2, Rn = 15.16 Ω, Rj/Rn = 13.2, Vg = 3.49 mV); SIS #13j08 (area 0.743 µm2 with a current
density of 24.5 kA/cm2, Rn = 15.44 Ω, Rj/Rn = 23.4, Vg = 3.52 mV).
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4. Conclusions

The technology for the fabrication of submicron Nb–AlN–NbN tunnel junctions using
EBL lithography was developed and optimized. The use of a negative-resist ma-N 2400
with lower sensitivity and better contrast in comparison with a negative resist UVN 2300-
0.5 improved the reproducibility of the tunnel junction fabrication process from cycle to
cycle. A high-quality ultrathin AlN barrier was formed during the nitridization of the Al
surface in RF plasma discharge in a pure N2 atmosphere. Etching in an SF6 atmosphere
showed better reproducibility of structures from cycle to cycle with higher-quality tunnel
junctions. As a result, Nb–AlN–NbN tunnel junctions of submicron sizes were fabricated
with a high current density and a quality parameter Rj/Rn > 15 (area from 2.0 to 0.2 µm2).
To implement the ultimate parameters of SIS mixers and to ensure equality of the SIS
junctions in the twin mixer circuits, further implementation of electron-beam lithography
is highly desirable. This is especially important for the development of SIS array receivers
and the further increase in the SIS operating frequency above 1 THz.
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