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Abstract

 

—The problem of designing intelligent agents for information search and recognition on the Internet
is considered. A new approach to the object-oriented logic programming of Internet agents is introduced. The
problem of ensuring the correct inference in conditions of permanent modification of information content on
the Internet is considered. An unconventional technique for the formalization of modifiable reasoning on the
Internet is described. The tools for logic programming of Internet agents based on this technique are considered.
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INTRODUCTION

An ever increasing number of people are regularly
searching for information on the Internet. Depending
on demands of a user, this process takes different
amounts of time and requires different tools for auto-
matic data mining. For many people, information
search on the Internet is still an occasional or unitary
operation; i.e., a person is either not at all interested or
is interested only occasionally in the subsequent modi-
fication of the information on a subject he looked for.
This unitary search in the World Wide Web is auto-
mated by common retrieval systems based on linguistic
methods and keyword search. It is safe to say that prob-
lems of the one-time search and recognition on the
Internet can be solved by using classical recognition
methods [1] (first of all, methods for structural recogni-
tion), which were developed for other applications. At
the same time, as people becomes more and more
dependent on information incoming from the Web (on
its reliability, timeliness, completeness, etc.), the search
for information on the Internet and its recognition
becomes a lasting or even permanent process. In order
to automate the lasting or permanent search in the Web,
it is necessary to use specialized application programs
(called “intelligent Internet agents”), which keep track
in the information in user-defined domain of interest.

Logic programming of Internet agents is most inter-
esting research direction in the field of information
search and recognition in the Web. It has been rapidly
developing during past ten years. A number of research
and commercialized projects (see reviews [9, 11, 23])
proved the good prospects of this approach. It was
shown that logic languages were convenient tools for
analyzing complex hypertext structures in the Web
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owing to their high expressiveness and deductive abili-
ties.

One can point out the following advantages of the
logic approach to the programming of Internet agents.

(1) The declarative semantics makes logic lan-
guages an adequate tool for the representation of the
information of a very high level of abstraction.

(2) The ideology of logic languages is based on the
concept of tree search (backtrack search). This princi-
ple is very useful when searching for information in the
Web.

(3) The syntax of logic languages is simpler and
more expressive than that of imperative languages
because (a) logic languages do not require that pointers
be explicitly used and (b) the operational semantics of
these languages is based on the concepts of recursion
and backtracking (in contrast to imperative languages,
which are based on the use of cycling and branching).

(4) Any complex data item in logic languages has a
clear and unambiguous text representation.

(5) The simplicity of syntax and operational seman-
tics of logic programs makes them a convenient object
for automatic construction, analysis, and transforma-
tion.

(6) Logic languages are attractive for processing
texts written in natural languages.

In this paper, we consider the methods of object-ori-
ented logic programming of intelligent agents. These
methods are based on the technique of modifiable rea-
soning in the dynamic Internet environment and on the
Actor Prolog object-oriented logic language that we
developed. In Section 1, we consider the problem of
ensuring the soundness of inference in conditions of
permanent changes in the information content and
describe a novel technique that is used to formalize
modifiable reasoning on the Internet. In Section 2, we
consider the means for object-oriented logic program-
ming of Internet agents. Section 3 is devoted to the con-
sideration of means for logic programming of multi-
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agent (parallel) information search and recognition sys-
tems. In Section 4, the approach presented is compared
with other approaches to the logic programming of
Internet agents.

1. PROBLEM FORMULATION 
AND THE MAIN IDEA OF ITS SOLUTION

Consider a simplified model of a logic intelligent
agent that performs the information search and recog-
nition on the Internet.

Assume that our agent is a certain logic program
that processes data extracted from the Web and output
reports on gathered data (see Fig. 1). In the context of
such a model, the following questions are of vital
importance:

(1) Does the intelligent agent work with certain
Internet resources specified in advance or are resources
selected in the course of program execution and does
this selection depend on the incoming data?

(2) How long should this agent operate? Certain
agents are used only occasionally to carry out one-time
search operations in the Web, the others uninterruptedly
operate for months or even years.

Obviously, when an agent works with certain
resources that are specified in advance, or when it is
used for one-time search operations, the new report
based on the modified data extracted from the Web can
be obtained simply by running the logic program all
over again. However, if the agent is to operate for a long
periods of time, which are comparable with the rate of
data updating in the Web, the use of standard Prolog is
mathematically incorrect, because the standard strategy
of Prolog execution does not ensure soundness and
completeness of inference in conditions of changing
source data. This problem has a purely practical aspect
as well. If a logic program that was executed for a long
time and independently selected necessary resources is
rerun, then computational resources are spent uselessly
and the gathered information is lost. More importantly,
a repeated run of a logic program may fail because a
part of necessary resources may be inaccessible at that
very moment as often happens in the Web.

Thus, the logic programming of intelligent agents
must be based on a certain inference mechanism allow-
ing one to update the source data and to modify the
statements that were inferred on the basis of these data,
all other results being preserved. In other words, it is
necessary to use a certain technique of modifiable rea-
soning. The purpose of this paper is to develop the tech-
nique that would support modifiable reasoning in the
dynamic Internet environment. This technique is an
alternative to nonmonotonic logic systems. The idea of
this technique can be illustrated by canonical example
about the ostrich Titi [2].

We write the canonical example in two different
ways. The first method is based on the use of the logic

program with the 

 

not

 

 statement, which is a certain
approximated implementation of nonmonotonic logic.

?–can_fly (“Titi,” Answer).
can_fly (Name, “yes”):– 

bird (Name), 

 

not

 

 ostrich (Name).
can_fly (Name, “not”):– 

bird (Name), 
ostrich (Name).

bird (“Titi”). 
ostrich (“Titi”). 
If the database does not contain the fact formulated

as 

 

ostrich (“Titi”)

 

, then the proof of the assertion 

 

not

 

ostrich (“Titi”)

 

 will succeed and Prolog will read out

 

Answer

 

 = 

 

“yes,

 

” meaning that Titi can fly. However,
when the fact 

 

ostrich (“Titi”)

 

 is appended, this negation
becomes inderivable, and Prolog will read out that Titi
cannot fly.

The second method is based on the use of the tech-
nique of logic actors that we developed [17, 18, 21, 22,
24, 25]. 

 

Logic actors

 

 are subgoals of the logic program
that can be proven repeatedly without logic program

 

backtracking

 

. In what follows, we denote logic actors
by using the prefix @.

?–can_fly (“Titi,” Order, Answer).
can_fly (Name, Order, Answer):–

bird (Name),
@suitable_order (Order, Answer).

suitable_order (“conventional,” “yes”).
suitable_order (“ostriches,” “not”). 
bird (“Titi”).
This program does the same, but the principle of its

operation is different. The main distinction is that the
query text (the text of a goal statement) is to be modi-
fied, not the program text. The new information is
incoming in the form of terms, i.e., in the form of new
values of variables in the goal statement, not in the form
of logic statements.

This works as follows. In the course of logic pro-
gram run, the actor @

 

suitable_order 

 

is proven as a
usual subgoal; Prolog will output the following result:

 

Answer = “yes,

 

” and, in addition, it will assign the
value to the variable 

 

Order

 

, i.e., 

 

Order

 

 = 

 

“conven-
tional.

 

” Subsequently, if it turns out that Titi is an
ostrich, this information must be communicated to the

 

Internet Reports

Logic
program

 

Fig. 1.

 

 A simplified model of an intelligent Internet agent.
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program via the following destructive assignment oper-
ation:

Order := “ostriches.”

The soundness of inference is certainly violated by
this destructive assignment. However, once the value of
the variable 

 

Order

 

 has been changed, the logic actor
mechanism will automatically restore the soundness of
the inference by the repeated proving of a separate sub-
goal, namely, the logic actor @

 

suitable_order

 

. This
time, the fact 

 

suitable_order (“ostriches,” “no”)

 

 will
be selected, and the program will output the new result:

 

Answer

 

 = 

 

“no.

 

”
The second formalization method has the following

merits:
(1) The new data arrive in the form of terms (data

items) rather than logic statements.
(2) If the source data have been changed, it is only

necessary to prove once again certain program sub-
goals; and

(3) Finally, the most important advantage is that we
stay in the framework of classical monotonic logic with
all its descriptive and deductive abilities being pre-
served.

To implement the logic actor mechanism, it is nec-
essary to work out an appropriate inference strategy
that supports the repetitive proving of program sub-
goals. It was proven in [21] that such strategies do exist;
they possess the completeness (if there are no infinite
loops) and soundness properties.

Based on this approach, we elaborated the Actor
Prolog object-oriented programming language. In the
next section, we consider the main principles of logic
programming in the Actor Prolog language and give an
example of a logic Internet agent.

2. OBJECT-ORIENTED LOGIC PROGRAMMING 
OF INTELLIGENT AGENTS

Actor Prolog is an object-oriented logic language
that we designed and implemented. The purpose of
designing this language was to generalize the object-
oriented approach to programming, analysis and design
of information systems that were based on “pure” logic
means. These means provide the rigorous declarative
(model–theoretic) semantics of object-oriented pro-
grams.

The problem of proper balance between logic and
object-oriented programming has a long history; the lit-
erature on this subject is quite extensive (see, for exam-
ple, reviews [6–8]). Studying this field, we concluded
that the intuitive programmer’s concept object does not
have a one-to-one counterpart in logic. When one
attempts to carry over this concept to logic program-
ming, it decomposes into at least three distinct aspects,
each having the descriptive abilities, theoretical prob-
lems, and implementation facilities of their own. These
are the following:

(1) 

 

The structural aspect of the object-oriented
approach. 

 

In imperative languages, objects are natural
means of program text structuring. Not only the means
of program text structuring, but also the means used to
control the search space correspond to this aspect in
logic programming.

(2) 

 

The dynamic aspect of the object-oriented
approach. 

 

This aspect deals with the abilities of imper-
ative languages to express the changes in the state of
objects and also with the parallel execution of separate
program branches. It is this aspect that causes the great-
est difficulties in the theory of object-oriented logic
programming.

(3) 

 

The informational aspect of the object-oriented
approach. 

 

It is related to problems of describing com-
plex data structures.

In the Actor Prolog language, the descriptive capa-
bilities in all three aspects of object-oriented approach
are treated in terms of logic as logic concepts and syn-
tactic means. For this purpose the Actor Prolog lan-
guage uses the following:

1. Classes, worlds, and inheritance.
2. Repetitive proving of logic actors and parallel

processes.
3. Prime and composite terms (including the so-

called 

 

underdetermined sets

 

).
The syntactic means that we developed are modified

formulas of the first-order predicate calculus. They are
logic analogs of certain means of imperative program-
ming—classes, actors, underdetermined sets, the
destructive assignment statements, and so on—but, in
contrast to them, support rigorous declarative seman-
tics of the program.

In this section, we consider two basic means of
Actor Prolog, classes and logic actors. For the descrip-
tion of underdetermined sets, see [19] or [22], where
the definition of the Actor Prolog language is given.

 

2.1. Classes, Worlds, and Inheritance

 

In Actor Prolog, the topology of the search space is
controlled by the mechanism of classes.

Similar to classes in the imperative object-oriented
approach, the Actor Prolog language uses syntactic
constructs for program text structuring called classes. A
class in a language is a set of logic clauses (facts, rules).
Similar to imperative programming, a unique name is
assigned to each class, and all classes are elements of
certain inheritance hierarchy.

The concept “class instance” of imperative pro-
gramming is also matched in the Actor Prolog language
by an analog. 

 

Class instances

 

 (“worlds”) in Actor Pro-
log are particular applications of classes. Moreover, in
Actor Prolog, there is no imperative statement 

 

new

 

(which exists, for instance, in C++ language). Class
instances in Actor Prolog are constructed implicitly as
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a result of constructive proof of special formulas called

 

constructors.

 

Class instances serve as components of the search
space in the course of program execution. A class
instance includes

(1) All clauses of the class and its ancestors in the
inheritance hierarchy.

(2) The set of slots.
The inheritance mechanism in Actor Prolog is an

analog of similar mechanisms in imperative object-ori-
ented languages; however, it provides a somewhat dif-
ferent operational semantics (namely, the inheritance
hierarchy defines the rules of search for program
clauses). For instance, if an instance of the class 

 

A

 

serves as the search space for the proof of a certain
predicate 

 

p

 

, then the search for the clause with the head-
ing 

 

p

 

 will be performed in turn among the clauses of the
class 

 

A

 

, then among the clauses of the immediate ances-
tor of the class 

 

A

 

, and so on until the appropriate clause
is found or until the inheritance hierarchy is exhausted.

Thus, in Actor Prolog, the clauses that are defined in
descendant classes, do not override one another,
although the overriding can be modeled using nonlogic
cut statement “!” In addition, Actor Prolog does not use
multiple inheritance. A class can have only one imme-
diate ancestor, because otherwise, the order of search-
ing through the clauses of parent classes in the course
of inferring is not clear.

A 

 

slot

 

 is a variable that is available in all clauses of
a class instance. Slot names are called 

 

class attributes

 

.
Attributes must be declared in all classes in which the
corresponding slots are used. In attribute declarations,

 

initializers of slots

 

 may be specified. Initializers are
language terms, constructors, or other attributes that
specify the values of slots.

Here is an example of the class definition:

 

class

 

 ADDER 

 

specializing

 

 DEVICE 

 

is

 

a
b = 0 –Definition of class attributes
cl = 0 –Slots 

 

b

 

 and 

 

cl

 

 by default
sum –contain 0
c2
[  –class clauses
table(0, 0, F, F, 0). table(0, 1, 0, 1, 0).
table(0, 1, 1, 0, 1). table(1, 0, 0, 1, 0).
table(1, 0, 1, 0, 1). table(1, 1, F, F, 1).
goal:–

table(a, b, c1, sum, c2).
]
The class ADDER that represents a complete binary

adder is the immediate descendant of the class
DEVICE. Attributes 

 

a

 

, 

 

b

 

, and 

 

c1 

 

denote summands of
the adder and the input carry bit, attributes 

 

sum

 

 and 

 

c2

 

,
the sum and the output carry bit, respectively.

The proof of a constructor (a constructor of an
instance of a certain class 

 

C

 

) consists of the two follow-
ing steps:

Step 1. The formation of a class instance.
(a) A corresponding search space is constructed.

The search space comprises the clauses of the class 

 

C

 

itself and the clauses of all its ancestors.
(b) The slots of the class instance are formed. A cer-

tain initial value is assigned to each slot whenever a
corresponding initializer is specified. If a slot is initial-
ized by a constructor, then a new world that has gone
through the first step of construction (the formation
phase) becomes the initial value of this slot. If a slot
does not have an initializer, then an anonymous variable
(denoted by the symbol “_”) is taken as the initial value
of this slot.

Step 2. The proof of the predicate 

 

goal

 

 in all the
worlds that were formed at Step 1.

The constructor is successfully proven if and only if
the proof of the predicate 

 

goal 

 

in all these worlds was
successful. 

 

Remark:

 

 In latest versions of Actor Prolog,
each automatic call of a predicate 

 

goal

 

 is accompanied
by the declaration of a new actor; that is, the prefix @
is used when the predicate 

 

goal

 

 is invoked.
In the example presented above, the constructor

(ADDER, a = 1, b = 1, sum = Result)

creates a new instance of the class ADDER and assign
the value 

 

Result = 0

 

 to this variable.
In Actor Prolog, a world in which the corresponding

predicate is to be proved may be explicitly indicated in
any subgoal of the clause. Such call procedures are
denoted by using syntactic constructs of the form

target?p(A,B,C,…),

meaning “execute the procedure 

 

p

 

 in the world 

 

target

 

.”
In the latest versions of Actor Prolog, we have also

introduced syntactic means for declaring parallel pro-
cesses. We dwell on this capability of the language in
the section devoted to the programming of multiagent
logic search and recognition systems.

The following theorem, which establishes the math-
ematical correctness of the class mechanism considered
above, was proven in [21].

 

Theorem 1.

 

 

 

There exist global syntactic transfor-
mations (that preserve the operational semantics of
programs) which convert any program written in Actor
Prolog with no actors, parallel processes, and nonlogic
built-in predicates into a program written in the pure
Prolog (or into a formula of the Horn subset (Horn
clauses) of the first-order predicate logic.)

 

Thus, classes, worlds, underdetermined sets, and
other syntactic means of the Actor Prolog language,
which reflect the structural and information aspects of
the object-oriented approach, have a standard model–
theoretic semantics.
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2.2. Repeated Proving of Logic Actors

 

The idea of repetitively proving subgoals and the
inference method implementing it (the actor mecha-
nism) are most interesting and important elements of
Actor Prolog.

A logic program in Actor Prolog is considered as a
theorem that is decomposed into logic actors. 

 

Logic
actors

 

 are repeatedly proving subgoals 

 

A

 

1

 

, …, 

 

A

 

N

 

 (see
Fig. 2) that communicate via common variables 

 

V

 

1

 

, …, 

 

V

 

M

 

.
This theorem is proven in a certain object-oriented
search space made up of individual worlds 

 

W

 

1

 

, …, 

 

W

 

K

 

.
For instance, the rectangle 

 

A

 

4

 

 in Fig. 2 denotes the
actor whose subgoals are proven in the worlds 

 

W

 

2

 

and 

 

W

 

3

 

.

The actor mechanism is an extension of the standard
control strategy. It is based on the standard “left-to-
right depth-first search with backtracking.” Additional
capabilities of the actor mechanism are the repetitive
proof of actors and the destructive assignment of values
to common variables. The repeated proving of actors is
used to ensure the soundness and completeness of
inference whenever the values of common variables are
changed as a result of destructive assignment.

The interaction between actors is implemented by
using the operation of “sound destructive assignment”
that alters the values of common variables of the pro-
gram. In the course of this operation, the values of com-
mon variables are changed as required and then the pro-
cedure of repeated proving of actors that depend on
former values of common variables is invoked. If the
repeated proving of all these actors is successfully com-
pleted, the operation is also successful; otherwise, a
standard backtracking of a logic program is performed.
Note that in the general case, the repeated proving of
any actor can affect some other actors and cause an ava-
lanche-like process of resolving the contradictions that
have arisen in the system.

Such a coordination of actors by using the destruc-
tive assignment is performed automatically every time
when each individual actor is successfully proven. In
addition, this coordination procedure can be called
manually by using a special built-in predicate denoted
by the symbol :=. This predicate performs the destruc-

tive assignment altering the values of common vari-
ables. The declarative semantics of this predicate is
exactly the same as that of conventional equality = in
the pure Prolog; however, the operational semantics of
this predicate is determined by the actor mechanism of
the language.

Note that the repetitive proof of actors has nothing
to do with the idea of so-called intelligent backtracking.
Cancelling the previous results before the repeated
proving of an actor is not a variety of backtracking
because the previous results of proving are not removed
from the stack (in contrast to the backtracking opera-
tion). Thus, the cancelled results of proving can once
again be activated if a standard backtracking occurs in
a program written in Actor Prolog. For this reason, the
idea of repetitive proving is sometimes referred to as
antibacktracking.

It should also be noted that the repeated proving of
actors whose proof is not completed at the moment is
forbidden in the Actor Prolog language. This rule pre-
vents the recursive cancelling of results of proving
actors, which would cause program looping.

The term actor is taken from the actor computing
model due to Hewitt [3]. However, the mechanism of
repetitive proving of subgoals implements another prin-
ciple of communication between actors. The main dis-
tinctive features of our computing model are listed
below.

(1) The information is communicated between
actors only through common variables by using the
destructive assignment.

(2) A logic actor is not aware which particular actors
will be affected by the destructive assignment it per-
forms. Thus, logic actors need not know one another
“by name” and, therefore, the program in Actor Prolog
is a strongly distributed system.

(3) The (standard) backtracking is implemented in
Actor Prolog.

(4) One more interesting property of our model is
the absence of spooling of data communicated between
actors. A common variable may change its value sev-
eral times before the repeated proving of the actor that
depends on this variable is started.

(5) The drawback of our model consists in that the
results of the previous proving of an actor become inac-
cessible once the repeated proving of this actor is
started.

The detailed description of the actor mechanism can
be found in the definition of Actor Prolog (see [19]).
The definition of the abstract (virtual) machine of the
sequential Actor Prolog is given in [21].

The declarative semantics of programs written in
Actor Prolog without parallel processes is defined
based on Theorem 1 as follows.

 

Definition 1.

 

 

 

A declarative (model–theoretic)
semantics of a program written in Actor Prolog without
parallel processes and nonlogic built-in predicates is

 

Fig. 2.

 

 Communicating logic actors.

 

W

 

1
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2
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3
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4

 

A
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3

 

W
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the declarative semantics of the program written in
pure Prolog that corresponds to the source program in the
sense of Theorem 1 once all prefixes @ are removed.

In [21], the following theorems on soundness and
completeness of the actor mechanism with respect to
the declarative semantics are proven.

Theorem 2. (on soundness of the actor mechanism).
The control strategy of Actor Prolog with occur check,
which is free from parallel processes and nonlogic
built-in predicates, is sound.

Theorem 3. (on completeness of the search space).
Any program in Actor Prolog free from parallel pro-
cesses and nonlogic built-in predicates finds all exist-
ing solutions provided that no infinite loops occur in the
course of its execution.

Programs in Actor Prolog that use parallel pro-
cesses, also have the model–theoretic semantics of a
special kind. It will be considered in the section on mul-
tiagent logic systems. It is safe to assume that all three
aspects of the object-oriented approach, which were
considered above (the structural, dynamic, and infor-
mational aspects) are implemented in Actor Prolog by
using purely logic means that support the model–theo-
retic semantics of programs. Actor Prolog, free from
nonlogic built-in predicates, is a pure logic object-ori-
ented language that supports modifiable reasoning.

2.3. An Example of the Internet Logic Agent

The program in Actor Prolog creates the set of logic
actors that are linked by common variables to one
another and to external information resources. If some
Internet resource is altered, no repeated proving of the
entire logic program is needed and only certain actors
will be affected.

Consider a simple example of a logic Internet agent
that performs the following task. There are many inter-
national and national government agencies that develop
standards in the field of information technologies. The
draft versions of standards and other electronic docu-
ments are regularly published on sites of these agen-
cies. The goal of the agent that is considered below is to
regularly check the sites of three agencies and notify
the user about their modification.

project is ((Example2)) (1)

class Example2 specializing TextPage is (2)

node1 = (ResourceChecker, (3)

organization = “IRE RAS,” (4)

location = “http://www.cplire.ru,” (5)

report = self) (6)

node2 = (ResourceChecker, (7)

organization = “NIST,” (8)

location = http://www.itl.nist.gov/…,” (9)

report = self) (10)

node3 = (ResourceChecker, (11)

organization = “IEEE,” (12)

location = http://standards.ie ee.org/…,”(13)

report = self) (14)

[ ] (15)

class ResourceChecker specializing Receptor is (16)

organization (17)

location (18)

report (19)

revision_period = days(3) (20)

max_waiting_time = 12.0 (21)

[ (22)

goal:– (23)

get_parameters(Value), (24)

write _parameters(Value). (25)

write_parameters(Value):– (26)

report? write1n(“Check of the Website of”), (27)

report ? write1n(organization), (28)

write_date_and_time(Value). (29)

write_date_and_time(entry(_,Date,Time)):–!, (30)

report? writeln (“Recent update of the page:”), (31)

report ? write1n(Date, “at,” Time). (32)

write_date_and_time(_):– (33)

report ?write1n(“The site is inaccessible!”). (34)

] (35)

The goal statement (1) of the program indicates that
the execution of the program is started by the construc-
tion of an instance of the class Example2. The class
Example2 (2–15) is a direct descendant of the pre-
defined class TextPage, which reads out data into
screen windows. The instance of the class Example2
has three slots, node1, node2, and node3, which contain
the instances of the class ResourceChecker. To each
instance of the class ResourceChecker three attributes
are passed, namely, the name of a certain organization,
its Internet address, and the reference to the instance of
the class Example2 itself (using the predefined slot
self). The class ResourceChecker (16–35) is a descen-
dant of the predefined class Receptor, which imple-
ments the program interaction with the Internet. The
mode of operation of the instance of the class Receptor
is specified by the following slots. The argument
revision_period (20) specifies the revision of the Inter-
net resource located at the address location every three
days. The argument max_waiting_time (21) means that
if no reply is received within the 12-second period in
the course of the resource access, it is assumed that
the resource access has failed. In each instance of the
class ResourceChecker, the actor goal (23) is created.
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It performs the following operations: the predicate
get_parameters (24) returns the parameters of the
specified Internet resource, and the predicate
write_parameters (25) displays the corresponding
message.

The program operates as follows. Three instances of
the class ResourceChecker and three actors goal corre-
sponding to them are created. Each of the actors is a
logic statement about a certain Internet resource. This
statement can be read in a declarative form in the fol-
lowing way: “Information about the current state of the
resource location is displayed.” In terms of logic pro-
gramming, one can assert that the program execution
proves the conjunction of these logic statements. Here,
the principal distinction of the program in Actor Prolog
from that in standard Prolog consists in the following.
After a time lapse, when the state of Internet resources
is changed, the logical truth of the statements of the
program in conventional Prolog is violated. Whereas
Actor Prolog automatically detects the changes in the
resource (in the example presented above, this can be
done within three days) and restores the soundness of
the proof by proving once more those (and only those)
actors whose resources were changed.

Thus, in contrast to standard Prolog, Actor Prolog
ensures the soundness of inference in conditions of
changing source data.

3. CONSTRUCTION 
OF MULTIAGENT LOGIC SYSTEMS

The Internet agents can be conveniently constructed
of individual blocks, that is, of smaller agents (parallel
processes) responsible for executing certain partial
tasks. If the problem is formulated in terms of commu-
nicating asynchronous processes, then it becomes
much easier to create and subsequently modify the
logic agents.

We developed a logic object-oriented model of
asynchronous computations for programming the mul-
tiagent logic systems and implemented this model in
Actor Prolog. In this section, we consider the basic
ideas that underlie this model as well as the principles
of constructing multiagent systems in Actor Prolog.

3.1. Logic Object-Oriented Model of Asynchronous 
Computations

The principle of interacting of parallel processes
implemented in Actor Prolog radically differs from the
principles of parallel computing used in imperative lan-
guages. For the imperative parallel programming, the
scheme that reads “Concurrently perform those opera-
tions for which the source data are ready. If the source
data are not ready, do something else or hibernate” is
quite natural and, perhaps, the only possible one. How-

ever, the logic programming makes it possible to view
this problem in a radically different way.

The coordination principle that we developed is
based on the repeated proving of subgoals. It can be for-
mulated as follows: “Concurrently perform those oper-
ations the results of which are observable for the user.
If the source data for a certain operation are not ready,
inference on the basis of incomplete source data. As the
new data are incoming, modify the reasoning and out-
put refined results.”

This idea is unconventional from the standpoint of
classical imperative programming. Certainly, such an
approach can be implemented only in the framework of
a logic language, which supports the model–theoretic
semantics of a program. The model–theoretic seman-
tics of logic programs serve as a criterion for the cor-
rectness of computations; this criterion is independent
of the operational semantics; it allows one to perform
computations with incomplete source data.

The main advantage of our scheme is that it
becomes possible not to use any methods for synchro-
nizing parallel processes that suspend computing. This
property is very useful in such fields as the visual
human–machine interface and programming of decen-
tralized distributed systems (the best example of such
systems is the Internet).

We now consider in more detail the means for paral-
lel computing in Actor Prolog.

Processes in Actor Prolog are selected class
instances whose clauses are executed concurrently with
clauses of other processes. Processes are denoted by
enclosing the constructors of class instances in double
parentheses, i.e.,

((ClassName, attribute1=Value1,

attribute2=Value2,…))

Processes can interact through common variables in
arguments of constructors and by means of predicate
calls. That is why, in contrast to the classical object-ori-
ented model where only one kind of interprocess com-
munication is used, the computing model that we devel-
oped uses two kinds of interprocess communication,
the flow and direct messages.

The difference between flow and direct messages
consists in the following.

(1) Direct messages are passed directly from one
process to another (in the form of predicate calls), while
the flow messages are passed from one to many pro-
cesses (by changing the values of common variables).

(2) Direct messages are not lost during communica-
tion, while the flow messages can cancel one another if
a new (updated) value of a variable arrives before the
processing of the previous value of this variable has
started.
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When a message is received, it is processed and the
state of the process is changed. The period of process
execution corresponding to the processing of a certain
message, is called a phase of process execution. At each
phase, the actors belonging to this process are made
consistent with the information that has come from the
outside. Depending on the result of repeated proving of
actors, two states of a process are possible. (In this
paper, we restrict ourselves to the consideration of two
states of a process to simplify the presentation). Thus,
it is either

(1) A proven process. This state is characterized by
the consistency of all actors of the process (the proof of
all actors was successful).

or

(2) A failed process. It is characterized by the fact
that actors of the process are inconsistent.

Flow messages are processed in Actor Prolog in the
following way. When the value of a common variable V
that links the recipient process P to other processes is
changed, the destructive assignment V := NewValue is
performed in the process P. The result of this operation
is a repeated proving of certain actors of the process P.

Both direct and flow messages in the model under
consideration are asynchronous. In the course of execu-
tion of clauses of any process, this process can call a
predicate of some other process by means of special
syntactic constructs, which will be considered below.
The execution of these constructs is always completed
successfully and in no way affects the further execution
of the process. Moreover, a specified predicate call is
actually executed upon the completion of a current
phase of process execution if and only if this phase is
completed successfully.

The call of a predicate in some other process is
denoted by using special statements of the form

Target << p(A, B, C, …)

Target <– p(A, B, C, …)

The first statement is used to denote so-called infor-
mation direct messages; the second one is used to
denote switching direct messages. These kinds of mes-
sages differ by the rules for processing of the received
messages, namely,

(1) Once a switching message is processed, the pro-
cess may become either proven or failed, while after
processing an information message, the process is
always proven. If the repeated proving of actors that
was initiated by the received information message fails,
this message is simply ignored and the process restores
its former state.

(2) In contrast to switching messages, processing of
information messages is suspended until the recipient
process becomes proven. As long as the process is in

the failed state, information messages are stored in the
buffer.

Note that prior to sending direct and flow messages,
all unbound variables appearing in the corresponding
predicate calls and terms being communicated are
replaced by the special constant # in order to prevent
the chaining of unbound variables in distinct processes.
This transformation preserves the soundness of a logic
program with respect to the declarative semantics.

Note also that the processing of flow messages is in
complete conformity with the rules for processing of
switching messages presented above; therefore, flow
messages can be called flow switching messages.

In our computing model, special facilities are
designed to control the interprocess flow messaging. A
process can declare the current value of a common vari-
able as protected. If this is the case, then other pro-
cesses that use this variable are forbidden to assign
ordinary (unprotected) values to it. A protected value of
a variable can only be changed for another protected
value. A special syntactic designation is introduced in
Actor Prolog for creating protected values of common
variables; namely, the keyword protecting is placed
before the argument name in the constructor of the pro-
cess, e.g.,

((ClassName, …, protecting x =Value, …)).

All things considered, the logic object-oriented
model of asynchronous computations can be presented
in a graphic form as is shown in Fig. 3.

Each process P1, …, Pq is a set of actors that are exe-
cuted in certain worlds (as depicted in Fig. 2). Pro-
cesses communicate through common variables
CV1, …, CVr, and by passing information (IDM) and
switching (SDM) direct messages.

Our model is more complex in structure and has a
more complex paradigm than the classical object-ori-
ented computing model. However, in contrast to the
standard object model, our model supports the declara-
tive (model–theoretic) semantics of programs being
described. In the next section, we consider the declara-
tive semantics of parallel logic programs used in the
computational model that we developed.

3.2. Declarative Semantics of Multiagent Systems

We describe and analyze multiagent logic systems
by using two kinds of the model–theoretic semantics. In
doing so, we proceed from the following consider-
ations.

(1) Processes of Actor Prolog communicate strictly
asynchronously, that is why, in a number of cases, it is
useful and expedient to study the standard model–theo-
retic semantics of each process, considering these pro-
cesses as independent programs.
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(2) To describe the system as a whole, we elaborated
the so-called generalized model–theoretic semantics.

The generalized declarative semantics (2) is, in a
sense, a less powerful description tool than the standard
model–theoretic semantics (1). However, it has the fol-
lowing useful properties:

(a) The generalized declarative semantics is a math-
ematically rigorous description of the set of solutions
that can be computed by a nondeterministic concurrent
agent system. This description is independent of its
operational semantics.

(b) The generalized declarative semantics supports a
declarative programming style, which facilitates pro-
grammer’s work and makes complex concurrent pro-
grams easy to read and intuitively clear.

The essence of the generalized declarative seman-
tics consists in the following. A sequential program P'
is constructed from the source text of a multiagent logic
program P, which uses parallel processes and message
passing, according to the following rules:

(i) All constructors of processes in the program P
are replaced by similar constructors of class instances.

(ii) All operations of direct message passing in the
text of the program are replaced by the constant “truth.”
As was already noted, operations of direct message
passing in Actor Prolog are purely asynchronous and
are always completed successfully, therefore, from the
standpoint of declarative semantics, these operations
can be ignored.

(iii) All nonlogic operations in the text of the pro-
gram are replaced by the constant “truth.”

Obviously, the program P' thus constructed has a
standard model–theoretic semantics in the sense of
Definition 1. Moreover, it is also obvious that the stan-
dard model–theoretic semantics of the program P' con-
tains all values that could be computed by the source
program P, although the operational semantics of the

program P' differs from the operational semantics of
the source program P.

Definition 2. The standard model–theoretic seman-
tics of program P' constructed according to rules (1)–
(3) listed above serves as the generalized declarative
(model–theoretic) semantics of the program P in Actor
Prolog with parallel processes and nonlogic built-in
predicates.

Negation not is not used in Actor Prolog; therefore,
the following proposition of soundness holds for the
generalized model–theoretic semantics.

Proposition. The control strategy of Actor Prolog
with occurrence checking, parallel processes and non-
logic built-in predicates ensures the soundness of logic
programs with respect to their generalized declarative
semantics.

Of course, the programs in Actor Prolog do not have
a property of completeness with respect to the general-
ized declarative semantics. The strategy of execution of
parallel logic programs that forms the basis of our logic
object-oriented model of asynchronous computations is
responsible for the soundness of inferene alone, allow-
ing one to discard the completeness of inference with
respect to the declarative semantics in certain cases.

3.3. Principles of Construction of Logic Systems
of Communicating Agents

The logic object-oriented model of computations
that we developed shapes a certain programming style
and certain principles of applied system design.

(1) The use of the flow message mechanism through
common variables makes individual agents (processes)
of Actor Prolog sufficiently independent from one
another (as was already noted, a set of communicating
logic actors possesses the properties of a strongly dis-
tributed system). At the same time, links through com-

Fig. 3. Logic object-oriented model of asynchronous computations.
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mon variables, in contrast to procedure calls, are static
in their character and largely support the declarative
style of programming. These properties of Actor Prolog
facilitate and foster a wide use of component-oriented
approach when designing applied systems of search
and recognition. Programs written in Actor Prolog can
be conveniently decomposed into separate components,
parallel processes, which have meaningful declarative
semantics independent from other components.

(2) Our computing model supports and facilitates
the creation of visual interface of applied program.
From the standpoint of logic, the human–machine
interaction can be conveniently viewed as a cooperative
proof of a certain theorem by an operator and a com-
puter. In this process, the user alters the initial condi-
tions of the problem all the time, while the computer
ensures the correctness of obtained results. In Actor
Prolog, the data input by a user is regarded as a destruc-
tive assignment that automatically calls the procedure
of repeated proving of actors of a logic program. Thus,
the actor mechanism relieves the programmer of having
to “manually” describe the processing of events enter-
ing the program from the outside. This substantially
simplifies and step up program design with visual user
interface.

In particular, the logic object-oriented model of
asynchronous computations goes well together with the
ideas of visual programming using functional and data-
flow diagrams.

3.4. Visual Programming of Internet Agents

We have developed experimental tools for visual
logic programming of Internet agents. The use of
SADT-diagrams [5, 20, 21] forms the basis. SADT-dia-
grams are a variety of functional diagrams and are
widely applied for the analysis and design of complex
systems [5].

The system of visual programming implements the
following scheme for intelligent agent design.

(1) SADT tools are used to develop the graphic
description of an intelligent agent. SADT-description is
a hierarchy of blocks that receive and pass data flows
(see Fig. 4).

(2) Each elementary block of a SADT-model is put
into correspondence with a logic description in the
form of a certain class of Actor Prolog. The source text
in Actor Prolog can be written by a programmer or
taken from the library of reusable modules.

(3) The graphic description of the agent is automat-
ically translated into the text in Actor Prolog. The syn-
tactic means of Actor Prolog make it possible to imple-
ment the block–hierarchical structure and links
between blocks of a diagram in the form of communi-
cating processes.

(4) Assembling the automatically created text and
descriptions of elementary blocks, we obtain a ready-
to-use program in Actor Prolog.

Fig. 4. An example of visual logic agent.
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Experimentation with visual programming has
shown that SADT-diagrams can be conveniently used
not only as a visual programming language but simply
as a user graphic interface. At present, visual program-
ming system automatically creates visual interface of a
logic program on the basis of source SADT-diagram
(see Fig. 4).

Individual blocks of a visual user interface on the
basis of SADT-diagrams are implemented by using par-
allel processes of Actor Prolog. As a rule, each elemen-
tary block of a diagram has its own dialog box that
opens by the click of a mouse. The color of the block
changes automatically depending on the state of the
corresponding process. A user can interact with the
blocks of the diagram in any order. Repeated alteration
of any parameters entered earlier is also possible.

The tools for visual programming based on the
object-oriented logic approach substantially simplify
and step up the creation of Internet agents.

4. COMPARISON WITH OTHER APPROACHES 
TO LOGIC PROGRAMMING

OF INTELLIGENT INTERNET AGENTS

Hewitt was among the first scientists who noted that
the use of standard Prolog for the programming of dis-
tributed information systems was mathematically
improper [4]. Unfortunately, the theoretical problem
thus revealed was not timely solved and is still ignored
by many researches.

Certain promising approaches to the study of declar-
ative semantics of distributed systems were elaborated
in the field of logic programming of communicating
agents.

Kowalski and Sadri [12] proposed extended Prolog
for the programming of systems of communicating
agents. Using logic rules with the “time” parameter and
a special proof procedure, they developed means for
logic description of agents with memory that responded
to external events. In contrast to our computing model,
Kowalski and Sadri considered the interaction through
the use of logic statements that described observations
made by agents alone. In the framework of this
approach, a declarative semantics of individual agents
taken separately was considered, but the declarative
semantics of the system as a whole was not supported.

Costantini proposed a promising approach making
it possible to study the declarative semantics of a sys-
tem of communicating agents as a whole [13]. She used
special syntactic conventions and interagent communi-
cation mechanism similar to the mechanism of infor-
mation direct messages used in our model of asynchro-
nous computations.

The models of parallel computations based on vari-
ous principles of interagent communication were also
developed for the Internet logic programming.

Davison and Loke [10] proposed a model of parallel
computations which was based on the recursive

description of communicating processes (using parallel
logic programming language Parlog). A distinctive fea-
ture of their model was flexible means for handling the
emergencies encountered when working on the Inter-
net. Using the developed model, Davison and Loke
implemented parallel programming means in their Log-
icWeb logic programming system for the Internet [11].

Pontelli and Gupta [14] developed the W-ACE logic
programming system also based on the recursive
description of processes. In W-ACE language, the
means for structuring the search space based on modal
statements were introduced.

In contrast to [10, 14], Actor Prolog does not use the
recursive clauses for description of interprocess com-
munications because, in our opinion, this would com-
plicate the task of ensuring the soundness of inference
in conditions of permanent modification of the source
data.

Tarau [15] developed an ingenious model of parallel
computations based on “fluents,” Prolog interpreters
that passed the flows of found solutions to one another.
This approach is close to the mechanism of “asynchro-
nous rendezvous,” which was proposed earlier by
Eliëns and de Vink [16]. In our opinion, this principle
of parallel process communication has good potential
in the visual logic programming of Internet agents. It
can be described in terms of the generalized declarative
semantics we developed. At present, we experiment
with the extensions of Actor Prolog of this kind.

It is the common opinion of experts in this research
field that it is necessary to combine the logic approach
with concepts of object-oriented programming. In our
computing model and in Actor Prolog logic language,
the principles of the object-oriented approach are
implemented consistently and purposefully. As a con-
sequence, they are conceptually close to and make a
natural combination with the ideas of visual and com-
ponent-oriented programming.

CONCLUSIONS

The approach to the object-oriented logic program-
ming that was considered in this paper can be used to
develop intelligent agents for the information search
and recognition in a complex structured dynamic Inter-
net environment. A novel technique of modifiable rea-
soning on the Internet forms the basis of this approach.
Based on this technique, we have developed Actor Pro-
log object-oriented logic programming language. It
ensures the soundness of logic programs (intelligent
agents) functioning on the Internet environment under
conditions of permanent changes of information.

The software tools that we developed make it possi-
ble to develop personalized systems (agents) for data
mining on the Internet. The use of the object-oriented
logic approach substantially facilitates the creation of
Internet agents and their subsequent modification.
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