

Pattern Recognition and Image Analysis, Vol. 11, No. 2, 2001, pp. 454–457.
Original Text Copyright © 2001 by Pattern Recognition and Image Analysis. English Translation Copyright © 2001 by

MAIK “Nauka

/Interperiodica” (Russia).

On the Problem of Logical Recognition
in the Dynamic Internet Environment

1

A. A. Morozov and Yu. V. Obukhov

Institute of Radio Engineering and Electronics, Russian Academy of Sciences,
ul. Mokhovaya 11, GSP-3, Moscow, 103907 Russia

e-mail: {morozov, obukhov}@mail.cplire.ru

Abstract

—The problem of formalized logical recognition in conditions of permanent modification of informa-
tion content on the Internet is considered. An approach based on the idea of modifiable reasoning is proposed.
As a mathematical technique for this approach, we propose to use the method of logical actors. This method is
compared with the nonmonotonic reasoning.

Received October 25, 2000

INTRODUCTION

The complexity of the retrieval and recognition of
information entities on the Internet is caused by the fol-
lowing reasons.

1. The information on the Internet has a complex
structure permanently being renovated.

2. The space of informational search is extremely
large.

Since the features of sought for entities have a com-
plex structure, it is expedient to use logical models and
languages when solving the problems of information
retrieval and recognition in the Internet environment.
However, the use of logical reasoning is substantially
complicated by the necessity of ensuring the soundness
and completeness of logical inferences under condi-
tions of permanently updating information on the Inter-
net. The data may undergo changes in the course of the
execution of a logic program, which may result in rec-
ognition errors.

In this paper, we discuss the problems of developing
a mathematical tool for the modifiable reasoning that
would ensure the validity of logic programs (intelligent
agents) that function in the dynamic Internet environ-
ment, where the informational content is permanently
changing and augmented. We compare the nonmono-

tonic reasoning and the method of logical actors as pos-
sible bases for the tool mentioned above.

1. THE MODEL OF AN INTELLIGENT AGENT

Consider a simplified model of an intelligent agent
that performs the information retrieval and recognition
on the Internet (see figure).

Let us assume that our agent is a certain logic pro-
gram that processes data extracted from the Internet
and outputs reports on the gathered data. In the context
of such a model, the following questions are of vital
importance:
1. Does the intelligent agent work with certain Internet
resources specified in advance or do the resources
depend on the incoming data and are they selected in
the course of program execution?
2. How long should this agent operate? Certain agents
are used only occasionally to carry out one-time search
operations on the Web (by the way, this task is quite
adequately executed by conventional search engines
like Rambler, Alta Vista, etc.), while others continually
operate for months or even years.

Obviously, when an agent works with certain
resources specified in advance or when it is used for
one-time search operations, the new report based on the

SOFTWARE AND HARDWARE IN SYSTEMS
OF PATTERN RECOGNITION AND IMAGE ANALYSIS

Internet resources

Logic
program

Reports

A simplified model of the Internet intelligent agent.

1

The work was supported by the Russian Foundation for Basic Research, project no. 00-01-00560a.

PATTERN RECOGNITION AND IMAGE ANALYSIS

Vol. 11

No. 2

2001

ON THE PROBLEM OF LOGICAL RECOGNITION 455

modified data from the Web can be obtained simply by
running the logic program all over again. However, if
the necessary resources are selected by the agent (i.e.,
if the

active

 information retrieval is performed), a sim-
ple repeated run of a logic program may fail because
part of the necessary resources may be inaccessible at
that very moment, as often happens in the Web. If, in
addition, the agent is designed for long-term data col-
lection, the logic program restart will lead to the wast-
ing of computational resources and to the loss of col-
lected data.

Thus, the logic programming of intelligent agents
that perform the active information retrieval and oper-
ate over relatively long periods of time must be based
on a certain inference mechanism allowing one to
update original data and to modify the statements that
were inferred on the basis of these data with all other
results being preserved. In other words, what we need
is a certain mechanism of modifiable reasoning.

2. FORMALIZATION OF MODIFIABLE
REASONING ON THE INTERNET

Regarding modifiable reasonings, the first thing that
comes to mind is nonmonotonic reasoning. The idea of

nonmonotonic logical systems

 [1], by and large, con-
sists in formalizing the reasonings that allow for the
construction of satisfiable but not valid statements.
Such logical schemes allow one to formalize the rejec-

tion of certain statements that were inferred earlier
whenever new data that contradict these statements
become available. That is why nonmonotonic reason-
ing is seen as the best (and sometimes, the only possi-
ble) tool for the formalization of modifiable reasonings.
Nevertheless, starting from our experience of work
with inference systems [3, 5, 6], we can assert that this
idea is wrong or, at least, does not reflect the entire
range of methods that can be used to formalize modifi-
able reasoning.

As an alternative to the nonmonotonic logical
schemes, we have elaborated the technique of

logical
actors

 [2, 3, 6, 7]. This technique is free from the draw-
backs of nonmonotonic reasoning such as
(1) the lack of validity of derived formulas;
(2) the possibility of obtaining mutually exclusive
results when the inference rules are applied in a differ-
ent order;
(3) the danger of looping when determining and inter-
preting the deducibility relation.

Moreover, our method has certain advantages,
which are illustrated by the following example.

We write the same canonical example (about the
ostrich Titi [1]) in two different ways. First, we use the
logic program with the operator

not

, which is a certain
approximation for nonmonotonicity relation in the
Prolog.

?-can_fly (“Titi,” Answer). (Goal statement)
can_fly (Name, “yes”):–

bird (Name),

not

 ostrich (Name). (Negation through failure)
can_fly(Name, “not”):–

bird (Name),
ostrich (Name).

bird (“Titi”).

ostrich (“Titi”). (Appended statement)

If the database does not contain the fact formulated as

ostrich (“Titi”)

, then the proof of the statement

not

ostrich
(“Titi”)

 will succeed and the Prolog will read out

Answer = “yes

,” meaning that Titi can fly. However, when
the fact

ostrich (“Titi”)

 is appended, this negation
becomes inderivable, and the Prolog will answer that Titi
cannot fly. Notice that the new information is appended as

a fact of the database; that is, the

program text

 is modified.
The

query text

 remains unchanged under this procedure.

Now, let us write the same example in terms of logical
actors.

Logical actors

 [2] are the logic program’s subgoals
that can be solved

repeatedly

 without logic program

back-
tracking

.

?-can_fly (“Titi,” Order, Answer). (Goal statement)

can_fly (Name, Order, Answer):–

bird (Name),

@verify_order (Order, Answer). (Logical actor)

verify_order (“conventional,” “yes”).

verify_order (“ostriches,” “not”).

bird (“Titi”).

456

PATTERN RECOGNITION AND IMAGE ANALYSIS

Vol. 11

No. 2

2001

MOROZOV, OBUKHOV

This program does the same, but the principle of its
operation is different. The main distinction is that not
the

program text

 but the

query text

 is modified (the text
of the goal statement). The new information comes not
in the form of logical statements but in the form of
terms, i.e., in the form of new values of variables in the
goal statement.

This is done as follows. In the course of executing
the logic program, the actor

verify_order

will be solved
as a usual subgoal; the Prolog will output the following
result:

Answer = “yes,

” and, moreover, it will assign the
value to the variable

Orde

r, i.e.,

Order = “conven-
tional.

” Subsequently, if it turns out that Titi is an
ostrich, this information must be communicated to the
program via the following

destructive assignment

 oper-
ation:

Order: = “ostriches.”

The correctness of logical inference is certainly vio-
lated by this destructive assignment. However, once the
value of the variable

Order

 has been changed, the logi-
cal actor mechanism will restore the correctness of the
inference by the repeated proof of a separate subgoal,
namely, the logical actor

verify_order

. This time, the
fact

verify_order (“ostriches,” “not”)

 will be selected
in the database and the program will output the new
result:

Answer = “no.

”
The second formalization method has the following

merits:
1. The new data are arriving in the form of terms (data
items). This is more convenient from the standpoint of
real-life program designing.
2. If the source data have changed, it is necessary to
resolve only some separate program subgoals; more-
over, these subgoals can easily be found by analyzing
which predicates depend on which variables.
3. Finally, the most important advantage is that the rea-
soning is carried out in the framework of classical
monotonic logic, and the modifiable reasoning imple-
mentation becomes, in fact, purely an engineering
problem.

To implement the mechanism of logical actors, it is
necessary to work out an appropriate inference strategy
that supports the repeated solving of program subgoals.
In [6], it is proven that such strategies do exist; they
have the

completeness

 (provided there is no infinite
looping) and

soundness

 properties.
We implemented one of the possible strategies in the

Actor Prolog language [2, 4, 7]; this strategy was tested
for the problem of logical analysis of functional
(SADT) diagrams of information systems [5, 6].

3. SCHEMES FOR USING
THE LOGICAL ACTORS

The simplest scheme of using the logical actor tech-
nique on the Internet is the application of the Actor Pro-
log language for programming intelligent agents [8]. In

this process, the logic program creates a set of logical
actors that are related to each other and to external
information resources by common variables. If some of
the Internet resources being used undergo changes, the
repeated solving of the entire logic program is not nec-
essary because only several actors are affected.

The following more complex schemes of using log-
ical actors on the Internet are believed to be of practical
interest. The Internet agents are conveniently con-
structed of individual blocks, i.e., smaller agents (con-
current processes) that transfer data flows to one
another. If each elemental agent of such a network is
represented by a program written in the Actor Prolog
language, then the declarative semantics of the agent as
a whole can be characterized via the AND operation on
Horn clauses corresponding to individual blocks. In
particular, this scheme fits together with the ideas of
visual programming via

data-flow diagrams

.
Data-flow diagrams can be used not only as a visual

programming language, but simply as a

graphic inter-
face for the interaction with a user

. In so doing, the
states of individual blocks (validated/not validated) can
be marked by different colors. The validation of sepa-
rate blocks can be performed manually, for instance,
clicking the mouse on corresponding boxes of the
screen. Note that such a scheme presumes a clear-cut
division of functions between a human and a computer;
that is, the human is responsible for solving the

com-
pleteness

 and

termination

 manually handling the order
of the block validation, while the computer ensures the

correctness

 of the inference implementing sound infer-
ence control strategy.

One more scheme of using logical actors that
deserves an independent examination is the logic pro-
grams that

dynamically

 generate new agents (Concur-
rent Processes) in the course of their execution. The
construction of new agents in the course of logical pro-
gram execution can be considered as the transformation
of its declarative semantics.

CONCLUSION

In this paper, we have considered the problem of
developing a modifiable reasoning technique that
ensures the correctness of logic programs (intelligent
agents) functioning in the Internet environment under
conditions of permanent changes in the information
content. We have proposed a new version of modifiable
reasoning, namely, the

logical inference with the modi-
fication of the goal statement

. Certain schemes of using
the mechanism of logical actor to program Internet
agents are described.

REFERENCES

1. Thayse, A., Gribomont, P., Hulin, G,

et. al.

,

Approche
Logique de l’Intelligence Artificielle

, vol. 2:

De la
Logique Modale à la Logique des Bases de Données

,
Paris: Dunod, 1989.

PATTERN RECOGNITION AND IMAGE ANALYSIS

Vol. 11

No. 2

2001

ON THE PROBLEM OF LOGICAL RECOGNITION 457

2. Morozov, A. A., Actor Prolog,

Programmirovanie

, 1994,
no. 5, pp. 66–78.

3. Morozov, A. A., Obukhov, Yu. V., and Oleinikov, A. Ya.,
Logic Programming of Open Systems, in

Logika, metod-
ologiya, filosofiya nauki: tez. dokl. XI mezhd. konf.

,
(Proc. 9th Int. Conf. on Logics, Methodology, and Phi-
losophy of Science), Obninsk, 1995, pp. 153–156.
(http://www.cplire.ru/Lab144/obninsk.html).

4. Morozov, A. A. and Obukhov, Yu. V.,

Actor Prolog.
Opredelenie yazyka programmirovaniya

 (Actor Prolog.
Programming Language Definition), Moscow, 1996,
Preprint 2(613) of Institute of Radio Engineering and
Electronics, Russian Academy of Sciences. (http://www.
cplire.ru/Lab144/index.html).

5. Morozov, A. A. and Obukhov, Yu. V., Semantic Analysis
of Functional Diagrams of Information Systems with the
Means of Object-Oriented Logic Programming, in

Raz-
vitie i primenenie otkrytykh sistem: tez. dokl. IV mezhd.

konf.

 (Proc. 4th Int. Conf. on Open System Development
and Application), Nizhni Novgorod, 1997, pp. 61–64.
(http://www.rapros97.nnov.ru/reports/9.html).

6. Morozov, A. A., Logical Analysis of Functional Dia-
grams in the Interactive Design of Information Systems,

Cand. Sc. (Phys.Math.) Dissertation

, Moscow, 1998.
(http://www.cplire.ru/Lab144/auto.html).

7. Morozov, A.A., Actor Prolog: an Object-Oriented Lan-
guage with the Classical Declarative Semantics,

Proc. of
IDL’99 workshop

, Paris, 1999. (http://www.cplire.ru/
Lab144/paris.pdf).

8. Gulyaev, Yu.V., Morozov, A.A., and Obukhov, Yu.V., On
the Problem of Using Logic Object-Oriented Programming
in the World Wide Web,

Proc. of the Special Russian Ses-
sion “The Internet Developments in Russia.” First
IEEE/Popov Workshop on Internet Technologies and Ser-
vices

, Moscow, 1999, pp. 54–59. (http://www.cplire.ru/
Lab144/internet.html).

