
ISSN 1054�6618, Pattern Recognition and Image Analysis, 2015, Vol. 25, No. 3, pp. 481–492. © Pleiades Publishing, Ltd., 2015.

1 INTRODUCTION

Detection of abnormal behavior of people is a top�
ical and rapidly developing field of research that is
directly related to intelligent video surveillance, life
insurance, and the fight against terrorism [1–3]. In
recent years, logic programming of intelligent video
surveillance has been considered as one of the most
promising areas of research in the field of recognition
of abnormal behavior [4–9].

The idea of this approach is that the description and
subsequent analysis of the scenarios of abnormal behav�
ior of people and technical objects use a logic language;
in this case, logical rules describe temporal and spatial
relations between the objects to be analyzed and ele�
mentary events, as well as the properties of objects that
are related to the problem of recognition of abnormal
behavior. Typically, one distinguishes low�level recogni�
tion problems (e.g., background subtraction of a video
image, detection of people and cars in a video image,
construction of the trajectories of moving objects, rec�
ognition of the pose and certain parts of a human body,
evaluation of its velocity, detection of abrupt move�
ments, etc.) and high�level recognition problems (e.g.,

1 This paper uses the materials of the report submitted at the 11th
International Conference “Pattern Recognition and Image
Analysis: New Information Technologies,” Samara, Russia,
September 23–28, 2013.

recognition of a fight, armed assault, theft, unattended
objects, and others). High�level recognition problems
are solved with the use of logical means; in this case, the
input data are given by the results of low�level recogni�
tion obtained with the use of standard methods of video
image analysis and lower level programming languages.

Today, there are several research projects that are
using the idea of logic programming of intelligent video
surveillance. In particular, the research group of Artikis
[4, 5] is developing an approach based on event calculus
implemented with the use of a logic language. Within
this approach, so�called “long�term types of activities”
(meeting, fighting, etc.) are recognized as combinations
of “short�term types” (walking, running, being inactive,
etc.). These authors call attention to the problem of
uncertainty in the recognition of different types of
human activity; the ProbLog system of probabilistic
logic programming is applied to solve this problem.
Another approach to solving the uncertainty problem in
the recognition of behavior, which is based on the appli�
cation of predicate logic extended by the so�called bilat�
tices, was developed by Shet et al. [6]. Earlier, the same
author developed a VidMAP system of intelligent video
surveillance [7], which combines the Prolog program�
ming language with low�level algorithms for real�time
analysis of video images. Another intelligent video sur�
veillance system, VERSA, which is based on the SWI–
Prolog logic language, was developed by O’Hara [8].
According to this scientist, it has more powerful means
of temporal and spatial reasoning than does the Vid�
MAP system. Machot et al. [9] have described a recog�

Development of a Method for Intelligent Video Monitoring
of Abnormal Behavior of People Based

on Parallel Object�Oriented Logic Programming1

A. A. Morozov
Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences,

ul. Mokhovaya 11, str. 7, Moscow, 125009 Russia
e�mail: morozov@cplire.ru

Abstract—A method for intelligent video monitoring of abnormal behavior of people is considered that is based
on parallel object�oriented logic programming. The main idea of the method consists in the description of sought
scenarios of abnormal behavior of people followed by analysis of video images by logic programming means
(using first�order predicate logic). The distinctive features of this method are the use of the Actor Prolog object�
oriented logic language and the translation of logic programs of intelligent video surveillance into the Java lan�
guage. In this case, the object�oriented means of the logic language allow one to split a program into interacting
parallel processes that implement various stages of video image processing and scene analysis, while translation
into the Java language guarantees the necessary reliability, portability, and openness of the software for intelligent
video monitoring, including the possibility of using modern libraries of low�level image processing.

Keywords: intelligent video surveillance, parallel object�oriented logic programming, detection of abnormal
behavior, abnormal behavior of people, Actor Prolog, complex event recognition, machine vision, technical
vision, video image analysis, Prolog�to�Java translation.

DOI: 10.1134/S1054661815030153

Received January 30, 2014

APPLIED
PROBLEMS

482

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 25 No. 3 2015

MOROZOV

nition system for complex audio–video events that is
based on Answer Set Programming. According to these
scientists, the recognition method proposed can be
implemented on a special chip.

Use of the object�oriented logic language Actor Pro�
log [10–18], as well as the translation of logic programs
of intelligent video surveillance into the Java language
[16], are distinctive features of the method for recogni�
tion of abnormal behavior considered in this paper. In
this case, the object�oriented means of the logic lan�
guage allow one to split a program into interacting par�
allel processes that implement various stages of image
processing and scene analysis, while translation into the
Java language provides the necessary reliability, porta�
bility, and openness of the intelligent video monitoring
software, including the possibility of using modern low�
level image�processing libraries.

The article deals with the basic ideas and principles
that underlie the method developed for detecting
abnormal behavior. The first section considers the
structure of the simplest intelligent video surveillance
program and the implementation of the main stages of
video image analysis by the means of parallel object�
oriented logic language. The second section is devoted
to a detailed description of the built�in means of Actor
Prolog that implement a low�level analysis of video
images. In the third section, we discuss the description
of scenarios of abnormal behavior of people by the
means of the logic language and the issues of high�
level analysis of video images.

1. MAIN STAGES OF VIDEO IMAGE ANALYSIS

As a rule, video image analysis is naturally divided
into individual stages that can be implemented in the
form of interacting parallel processes. The application
of parallel programming is very convenient from the

point of view of structuring the text of a program and
becomes absolutely indispensable when analyzing
video images arriving in real time, because different
stages of analysis have different priorities. Some oper�
ations (for example, background subtraction, extrac�
tion of blobs, tracing of objects, etc.) are crucial
because the omission of these operations may lead to a
loss of video capture of objects. Other operations
(analysis of the interaction graphs of objects, visual�
ization of the results of analysis, etc.) can be sus�
pended to save computational resources. Unfortu�
nately, most logic languages, including the first logic
language, Prolog, have been initially created as
sequential programming languages; parallel calcula�
tions have been provided for neither at the level of the
mathematical theory nor at the level of computer
implementation. Parallel logic languages have long
ceased to be exotic; nevertheless, existing projects of
logic programming of intelligent video surveillance so
far have been based on sequential logic languages.

The method of logic programming of intelligent
video monitoring considered in this paper is based on
the use of object�oriented means of the Actor Prolog
logic language. In Actor Prolog, the text of a logic pro�
gram consists of separate classes [10], and parallel pro�
cesses represent a kind of instances of classes [12]. We
will consider the application of these means of the
logic language by an example of the analysis of one
standard video clip from the CAVIAR collection [19].

Below we sketch a logic program that recognizes a
street incident (Fig. 1).

The program creates two parallel processes. The
first process reads a sequence of JPEG images that
mimics a real�time input of a video and carries out a
low�level analysis, namely, the subtraction of back�
ground, discrimination of blobs, tracing of objects,
and the determination of the points of interaction of
blobs. All these operations are implemented by means
of a special built�in class ‘ImageSubtractor’ of Actor
Prolog, which will be considered in the following sec�
tion of the article. The second process analyzes the
information prepared in the first process and displays
the results of video surveillance on the screen. In gen�
eral, these two operations could also be implemented
in the form of separate processes, but we will not do
this for the sake of simplicity of exposition.

To create a program, we will use the following pre�
defined packages of Actor Prolog: Java2D, which
implements two�dimensional graphics, and Vision,
which is developed within our project and implements
low�level operations of video processing.

import .. from "morozov/Java2D";

import .. from "morozov/Vision".

The main class ‘Main’ does not contain any logical
rules; it is necessary only to create and interconnect
auxiliary instances of classes. The ‘Main’ class con�
tains the data_directory and target_directory slots,
which contain the names of directory and subdirectory

Fig. 1. A situation like a street incident (fight between two
people) comes into the field of view of the intelligent video
surveillance program. Heavy solid lines show the trajecto�
ries of people, and thin lines and circles indicate con�
nected graphs of motions of blobs.

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 25 No. 3 2015

DEVELOPMENT OF A METHOD FOR INTELLIGENT VIDEO MONITORING 483

where JPEG images are stored; the sampling_rate slot,
which contains the frame rate of a video clip; the
stage_one and stage_two slots, which contain processes
that implement the first and second steps of video pro�
cessing, respectively; and the low_level_analyzer slot,
which contains an instance of the built�in class
‘ImageSubtractor.’ Note that the constructors of the
instances of the ‘ImagePreprocessor’ and ‘ImageAnal�
yser’ classes are enclosed in double parentheses;
according to the syntax of Actor Prolog, this means
that these instances of classes are processes that are

executed in parallel with respect to other processes of
the program (that is, with respect to each other, as well
as with respect to the instance of the 'Main' class).
Note also that an instance of the ‘ImageSubtractor’
class is transferred to the stage_one and stage_two pro�
cesses as an argument; moreover, the stage_two
instance of the ‘ImageAnalyser’ class is transferred to
the stage_one process in order that the former could
send messages to it. Here a part of arguments of an
instance of the ‘ImageSubtractor’ class are omitted and
will be considered in the second section of the paper.

class 'Main' (specialized 'Alpha'):
constant:

data_directory = "data";
target_directory = "Fight_RunAway1";
sampling_rate = 25.0;
stage_one = (('ImagePreprocessor',

data_directory,
target_directory,
sampling_rate,
low_level_analyzer,
stage_two));

stage_two = (('ImageAnalyser',
low_level_analyzer,
sampling_rate));

internal:
low_level_analyzer = ('ImageSubtractor',

extract_blobs= 'yes',
track_blobs= 'yes',
…);

[
]

The ‘ImagePreprocessor’ class is a descendant of
the built�in class ‘Timer.’ The meaning of this inherit�
ance, as well as the logical rules defined within the
‘ImagePreprocessor’ class, will be considered in the
following section (here the rules of a class are omitted
and replaced by an ellipsis). The class ‘ImagePrepro�
cessor’ uses the data_directory, target_directory,
sampling_rate, stage_two, and low_level_analyzer
slots, the meaning of which has been explained above,
as well as auxiliary slots that contain instances of
classes that are internal with respect to an instance of
the class ‘ImagePreprocessor.’ In particular, the slot
subtractor contains an instance of the built�in class
‘SynchronizedImageSubtractor,’ to which, in turn, an
instance of the low_level_analyzer class is transferred
as an argument. In addition, the text slot, which con�
tains an instance of the built�in class ‘Text,’ the image
slot, which contains an instance of the built�in class
‘BufferedImage,’ and the state slot, which contains an
instance of the ‘ProgramState’ class, are defined. The
purpose of these slots will be explained below; how�
ever, the use of the ‘SynchronizedImageSubtractor’

class in a program is directly related to its structure and
therefore should be explained in greater detail here.

Owing to their mathematical origin, logic lan�
guages are poorly suited for storing large volumes of
bitmap data, which are exemplified by photos and
video images. The point is that data presentation in
logic languages involves terms, that is, in fact, hierar�
chical structures, symbols, numbers, and text strings.
Logic languages contain no data arrays in the form in
which they are used in imperative languages, and the
introduction of syntactic means similar to arrays into a
logic language is a separate mathematical (and engi�
neering) problem. Within our method of video image
analysis, video data are stored in the built�in class
‘ImageSubtractor’ of Actor Prolog, and all operations
with these data are carried out by the standard proce�
dures of this class. That is precisely why an instance of
the ‘ImageSubtractor’ class is transferred and used in
both processes that implement video image process�
ing. However, such a use of an instance of the ‘Image�
Subtractor’ class may conflict with the idea of Actor
Prolog, which forbids a direct call of the procedures of

484

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 25 No. 3 2015

MOROZOV

one process from another process (only a transfer of
asynchronous messages between processes is allowed)
[12]. The built�in class ‘SynchronizedImageSubtractor’
is applied precisely to prevent such collisions. The
instances of this class are used as a wrapper for the
instances of the ‘ImageSubtractor’ class.

In this example, an instance of the class ‘Synchro�
nizedImageSubtractor’ is internal with respect to an

instance of the ‘ImagePreprocessor’ class; therefore,
procedures of the class ‘SynchronizedImageSubtractor’
can be called from the ‘ImagePreprocessor’ class with�
out any restrictions. In this case, the ‘SynchronizedIm�
ageSubtractor’ class implements the corresponding
operations over the data of the class ‘ImageSubtractor’
and also provides synchronization and correct access
to data from several parallel processes.

class 'ImagePreprocessor' (specialized 'Timer'):
constant:

data_directory;
target_directory;
sampling_rate;
stage_two;
low_level_analyzer;

internal:
subtractor = ('SynchronizedImageSubtractor';

image_subtractor = low_level_analyzer);
text = ('Text');
image = ('BufferedImage');
state = ('ProgramState');

[
CLAUSES:
…
]

The class ‘ImageAnalyser’ uses the sampling_rate
and low_level_analyzer slots considered above, as well
as auxiliary slots that contain instances of classes that
are internal with respect to the ‘ImageAnalyser’ class.
The slot subtractor contains an instance of the built�in
class ‘SynchronizedImageSubtractor,’ which is used in

exactly the same way as in the ‘ImagePreprocessor’
class. The slot graphic_window contains an instance of
the built�in class ‘Canvas2D,’ the slot image contains
an instance of the built�in class ‘BufferedImage,’ and
the slot timer contains an instance of the built�in class
‘Timer.’

class 'ImageAnalyser' (specialized 'Alpha'):
constant:

sampling_rate;
low_level_analyzer;

internal:
subtractor = ('SynchronizedImageSubtractor',

image_subtractor= low_level_analyzer);
graphic_window = ('Canvas2D');
image = ('BufferedImage');
timer = ('Timer');

[
CLAUSES:
goal:-!,

timer ? set_priority('minimal'),
graphic_window ? show.

…
]

According to the semantics of Actor Prolog, after
creation of an instance of the ‘ImageAnalyser’ class, a
goal procedure is automatically called in this class,

which sets reduced priority to the process considered
(a set_priority predicate of the built�in class ‘Timer’ with
argument ‘minimal’ is called) and creates a graphic win�

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 25 No. 3 2015

DEVELOPMENT OF A METHOD FOR INTELLIGENT VIDEO MONITORING 485

dow for outputting the results of intelligent video mon�
itoring (a show predicate of the built�in class
‘Canvas2D’ is called). The purpose of other slots of the
class, as well as other rules defined in the class ‘ImageA�
nalyser,’ will be considered in Section 3 of the article.

Thus, with regard to the definitions given above,
the ‘ImagePreprocessor’ process is responsible for the
real�time input of video information and low�level
processing. The video information inputted and the
results of low�level processing are accumulated in the
class ‘ImageSubtractor.’ The ‘ImageAnalyser’ process
has lower priority; as far as possible, it receives and
analyzes the data accumulated in an instance of the
‘ImageSubtractor’ class and displays the results of log�
ical analysis on the screen.

2. LOW�LEVEL ANALYSIS OF VIDEO IMAGES

A widespread approach to the development and
debugging of methods of logical analysis of video images
is to use test video clips, low�level processing of which
(for example, the recognition and tracing of objects) is
carried out manually. Based on our experience, we
assume that such an approach is erroneous, because the
capabilities and the quality of work of high�level meth�
ods of analysis of video images essentially depend on the
quality of preliminary processing that can be guaranteed
by the low�level methods chosen. A characteristic exam�
ple of this relationship between high�level and low�level
methods is given by the problem of recognition of so�
called “abrupt movements,” which is of great practical
importance for recognizing “fight” and “street offense”
situations. Formally, an “abrupt movement” can mean a
movement of a human being or part of his body such that
the second derivative of its coordinates exceeds some
preset threshold. However, in practice, calculation of the
second derivative with acceptable accuracy requires
knowledge of the precise coordinates of a moving object,
which is associated with several serious problems of low�
level processing.

1. Generally, it is rather difficult to define even the
exact physical coordinates of a human being in a video
image. Usually, to solve this problem, one applies the
so�called ground plane assumption, which allows one
to evaluate the exact coordinates of feet on the basis of
several (at least four) reference points on the image.
The consideration of a complex relief of the floor and
steps, as well as partial overlapping of objects, makes
the problem an order of magnitude more difficult.

2. Even the evaluation of the first derivative of the
physical coordinates of a moving human being repre�
sents a hard problem, because, while moving, a human
being appears in different illumination conditions,
casts shadows, and is partially or completely over�
lapped by other objects. As a result, the silhouette of a
human being changes unpredictably, and the coordi�
nates of his trajectory contain many outliers.

3. A human being can make abrupt movements even
while remaining in place; therefore, to reliably and accu�

rately recognize abrupt movements, one should generally
recognize individual parts of the body (hands, feet, head,
etc.), which makes the problem of low�level analysis of
video images an order of magnitude more difficult.

Taking into account these considerations, we started
experiments together with the development of methods
of high� and low�level processing. Today, simplified
algorithms have been developed for low�level process�
ing of video images, which, in spite of their simplicity,
provide quality sufficient for the correct operation of
experimental logical methods, at least on test video
clips. These algorithms are implemented in the Java
language in the form of a built�in class ‘ImageSubtrac�
tor’ of Actor Prolog. Below, we consider the main stages
of low�level processing of video images and their imple�
mentation in Actor Prolog.

The first stage of video processing is subtraction of
the background. The ‘ImageSubtractor’ class receives a
sequence of video image frames and calculates the
mathematical expectation and variance of each individ�
ual pixel of the image. Pixels the values of which differ
from the mathematical expectation by a value greater
than the given threshold (the threshold is set in the num�
ber of mean square deviations) are considered to be ele�
ments of foreground objects. The variance and the
mathematical expectation of the values of pixels can be
constantly refined during the operation of the program
or on the basis of the given number of first frames. Before
calculation of the mathematical expectation and vari�
ance, the images can be converted to the grayscale for�
mat, as well as processed by a two�dimensional Gaussian
filter to reduce digital noise. Moreover, after the back�
ground subtraction, an image can be additionally pro�
cessed by a two�dimensional rank filter. The filter counts
the number of foreground pixels around every pixel on
the foreground and, if this number does not exceed the
set threshold, excludes the pixel from consideration.

The second stage of low�level processing of video
images is the discrimination of blobs. To distinguish
blobs, I developed and implemented a simplified algo�
rithm that creates rectangular blobs. The idea of the algo�
rithm consists in the pixels of foreground objects being
outlined by rectangular frames; in turn, intersecting
frames are also outlined by frames, a process that is con�
tinued until all pixels of foreground objects are outlined
by disjoint rectangles. The rectangles thus calculated are
considered to be the sought blobs of a video image.

The third stage of processing is the creation of
tracks—the trajectories of blobs. It is assumed that suc�
cessive frames of a video image contain the same blob if
the rectangles of blobs in adjacent frames intersect. If
there are several intersecting blobs, the blob with the
greatest intersection area is taken as a continuation of a
track, while all the other blobs are assumed to belong to
other tracks that intersect the given track. It is assumed
that the track for which the corresponding blobs are not
found in the next frame still exists for a certain period of
time. If a continuation of the track is not found during
this period, the track will be considered complete. To

486

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 25 No. 3 2015

MOROZOV

save memory, complete tracks are stored for a certain
period of time and then are forgotten. In addition,
tracks the length of which is less than a given threshold
are considered to be artifacts and are rejected immedi�
ately. Simultaneously with the construction of tracks,
their intersection points are stored. This is necessary for
constructing a graph of links between blobs, as well as to
accurately evaluate the velocity of individual blobs: to
evaluate the velocity of blobs, one chooses regions of
tracks that are free of intersections with other tracks.

The fourth stage of processing consists in determina�
tion of the velocity of blobs. The fast algorithm devel�
oped by the author calculates the lower bound of the
blob velocity. For this purpose, on the basis of a given
inverse matrix of the projective transformations, one cal�
culates the physical coordinates of four corners of a rect�
angular blob. The numerical differentiation of coordi�
nates gives a rough estimate for the velocity of each cor�
ner of the blob on the basis of the assumption that the
point considered is at the level of the floor. It is assumed
that this is so for at least one corner of the blob and that,
for all the other corners of the blob, these velocity esti�
mates turn out to be overstated since the camera is higher
than the floor level and the upper part of a human visu�
ally corresponds to farther points of the plane of the

floor. Based on these assumptions, one takes the least of
the four calculated values of blob corner velocities as the
lower bound for the velocity of the object. To increase the
stability of the estimates, the values of the coordinates of
blob corners, as well as intermediate and final values of
the blob velocity, are subjected to median filtration. Of
course, the algorithm described gives only rough esti�
mates for the velocity of people in a frame; however,
experiments with real video images have shown that the
algorithm is quite suitable to distinguish between, for
example, running and quiet walking.

The fifth stage of low�level processing consists in
the construction of a set of connected graphs of
motions of blobs. Each graph includes all tracks that
had intersection points at some instants of time. If
necessary, the algorithm allows one to rule out the
tracks of stationary and very slowly moving objects.

The built�in class ‘ImageSubtractor’ of Actor Prolog
implements the above�listed stages of low�level analysis
and gives the results of analysis in the form of composite
terms. In the example considered of intelligent video
monitoring, we use the following values of arguments of
the ‘ImageSubtractor’ class instance constructor:

('ImageSubtractor',
extract_blobs= 'yes',
track_blobs= 'yes',
use_grayscale_colors= 'yes',
apply_gaussian_filtering_to_background= 'yes',
background_gaussian_filter_radius= 1,
background_standard_deviation_factor= 1.2,
apply_rank_filtering_to_background= 'yes',
background_rank_filter_threshold= 4,
minimal_track_duration= 5,
inverse_transformation_matrix= [

[0.3945,0.0468,0.0168],
[0.0996,-0.1625,0.0056],
[-34.0116,28.5636,1.0000]],

sampling_rate,
apply_median_filtering_to_velocity= 'yes',
velocity_median_filter_halfwidth= 3);

The slots extract_blobs and track_blobs switch on
the mode of calculation of blobs and tracks. The slot
use_grayscale_colors switches on the conversion of
images to grayscale format. The slots
apply_gaussian_filtering_to_background and
background_gaussian_filter_radius switch on processing
of images by a Gaussian filter with a diameter of three
pixels. The slot background_standard_deviation_factor
sets a threshold for background subtraction. The
slots apply_rank_filtering_to_background and
background_rank_filter_threshold switch on a two�
dimensional rank filter of foreground pixels and set the

threshold of the filter. The minimal_track_duration slot
sets the minimum length of a track (in frames). The
inverse_transformation_matrix slot sets a value of the
inverted matrix of projective transformations. The
slot sampling_rate sets the frame rate of a video
image. The slots apply_median_filtering_to_velocity
and velocity_median_filter_halfwidth switch on median
filtration of the coordinate and velocity and set the width
of the window of the median filter to seven samples.

Consider the operation of ‘ImagePreprocessor,’
which carries out the video image input and the entire
low�level processing.

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 25 No. 3 2015

DEVELOPMENT OF A METHOD FOR INTELLIGENT VIDEO MONITORING 487

CLAUSES:
goal:-!,

Time0== ?milliseconds(),
state ? set_beginning_time(Time0),
set_period(1/sampling_rate,0),
activate.

The class ‘ImagePreprocessor’ is a descendant of
the built�in class ‘Timer’ that implements the call of a
tick predicate over given time intervals. The adjust�
ment of an instance of the class is performed during its
construction when the goal predicate is called. In this
case, the current time in milliseconds (the built�in

predicate milliseconds) is calculated and stored in a
local database state and then the period of calls of the
tick predicate (the built�in predicate set_period with
arguments 1 / sampling_rate, a period in seconds, and
0, delay before the first call of tick) is set, after which
the instance of the ‘Timer’ class is activated.

tick:-
T2== ?milliseconds(),
state ? get_beginning_time(T1),
Delta== (T2 - T1) / 1000.0 * sampling_rate,
N== ?convert_to_integer(?round(Delta)),!,
load_figure(N,T2).

With each call of the tick predicate, the time (in
milliseconds) that elapsed after the beginning of input
of a video image is calculated (the time of the begin�
ning of input is stored in the local data base state and is

retrieved by the get_beginning_time predicate). The
time in milliseconds is then recalculated to the num�
ber of a frame and is transferred to the load_figure
predicate as an argument.

load_figure(N2,_):-
state ? get_current_frame(N1),
N1 == N2,!.

load_figure(N,_):-
state ? set_current_frame(N),
ShortFileName== text?format("%03d",N) + ".jpg",
ImageToBeLoaded==

"jar:" + data_directory + "/" +
target_directory + "_jpg" + "/JPEGS/" +
target_directory + ShortFileName,

image ? does_exist(ImageToBeLoaded),!,
image ? load(ImageToBeLoaded),
subtractor ? subtract(N,image),
stage_two [<<] draw_scene().

load_figure(_,T2):-
state ? set_beginning_time(T2),
subtractor ? reset_results.

The load_figure predicate compares the specified
number of a frame with the number of the previously
processed frame and, if they do not coincide, loads
the frame into memory from the file with an appro�
priate name. The names of files are created automat�
ically according to the rules of naming used in the
CAVIAR collection of video clips [19]. Note the pre�
fix “jar:” added at the beginning of a file name. This
prefix is used because all graphic files in this example
are packed in a single JAR archive with an executable
Java code. A loaded image is physically stored in an
instance of the class ‘BufferedImage’ (the slot image).
Then, in an instance of the class ‘SynchronizedIm�
ageSubtractor’ (the slot subtractor), a built�in predi�
cate subtract is called, the first argument of which is

the number of the frame processed and the second
argument is the image loaded from a file. The class
‘SynchronizedImageSubtractor’ performs low�level
processing of the image in the corresponding
instance of the class ‘ImageSubtractor’; all the results
of processing remain in the internal arrays of the
instance of the class ‘ImageSubtractor’ and can be
retrieved as required.

Later, an asynchronous message draw_scene() is
sent to the stage_two process. Note the square brackets
enclosing the operator <<. The operator [<<] in Actor
Prolog implements unbuffered asynchronous interac�
tion. This means that the stage_two process will always

488

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 25 No. 3 2015

MOROZOV

process the latest draw_scene message addressed to it.
If the stage_two process does not have time to process
all the draw_scene messages addressed to it, some of
them will be merely ignored.

At the time when a video clip ends, when the
sequence of files is exhausted, the does_exist predicate in
the second rule of load_figure fails and, instead of the
second rule, the third rule works; as a result, a new start
time of video image inputting will be set, and all the
results accumulated in an instance of the class ‘Image�
Subtractor’ will be cancelled (by the built�in predicate
reset_results). Processing of the video clip will start anew.

The operation of the predicate draw_scene(), which
implements high�level processing of video images in
the ‘ImageAnalyser’ process, is considered below.

3. HIGH�LEVEL ANALYSIS OF VIDEO IMAGES

There are a few possible approaches to logical
description and analysis of the behavior of people by
means of logic programming.

1. Of course, the Prolog language is, in itself, a
declarative language the expressive capabilities of
which allow one, for example, to formulate a problem
of recognition of abnormal behavior of people in terms
of analysis of the graphs of motion of blobs. However,
in this way we inevitably face the need to introduce
elements of fuzzy reasoning to the logical analysis.
This is associated both with the ambiguity of the
results of low�level analysis and the fuzziness of the
scenarios of abnormal behavior themselves.

2. The simplest elements of fuzzy logical inference
can easily be introduced into the Prolog language by

means of standard arithmetic means of the language.
For example, the predicate is_a_running_person for
recognition of a running human considered in this
section takes into account simultaneously two char�
acteristics of blobs; namely, the average velocity of a
blob and the length of a track. Combination of these
two characteristics is performed by very simple fuzzy
metrics described in terms of arithmetic functions.
From the standpoint of the declarative semantics of
the language, the procedure is_a_running_person is a
standard formula of the first�order predicate logic.

3. The development of special logic languages to
describe the behavior of objects is a more interesting
approach from the point of view of mathematics; this
includes, for example, the extension of the predicate
logic by temporal, modal, spatial, fuzzy, and probabi�
listic expressive means followed by the implementa�
tion of these special languages by the means of the
Prolog language; however, this direction of research
falls outside the scope of the present article.

Let us return to our example of recognition of abnor�
mal behavior. Let us describe the following scenario of
abnormal behavior in terms of the logic language: “Two
(or a few) people meet somewhere within the surveil�
lance area of a camera. After that, the group of people
splits up and at least one of the people runs away.” This
situation may testify to a street incident, fight, or rob�
bery; therefore, it should be considered as a probable
case of abnormal behavior (and an appropriate warning
should be given to the video surveillance operator).

The class ‘ImageSubtractor’ employs the following data
structure to describe connected graphs of motion of blobs:

DOMAINS:
ConnectedGraph = ConnectedGraphEdge*.
ConnectedGraphEdge = {

frame1: INTEGER,
x1: INTEGER, y1: INTEGER,
frame2: INTEGER,
x2: INTEGER, y2: INTEGER,
inputs: EdgeNumbers,
outputs: EdgeNumbers,
identifier: INTEGER,
coordinates: TrackOfBlob,
mean_velocity: REAL
}.

EdgeNumbers = EdgeNumber*.
EdgeNumber = INTEGER.
TrackOfBlob = BlobCoordinates*.
BlobCoordinates = {

frame: INTEGER,
x: INTEGER, y: INTEGER,
width: INTEGER, height: INTEGER,
velocity: REAL
}.

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 25 No. 3 2015

DEVELOPMENT OF A METHOD FOR INTELLIGENT VIDEO MONITORING 489

That is, a graph is represented as a list of underde�
termined sets [10] that describe individual edges of
the graph. Each edge is directed and equipped with
the following attributes: the numbers of the first and
the last frames (frame1, frame2), the coordinates of
the first and the last point (x1, y1, x2, y2), the list of
the numbers of edges that are immediate predeces�
sors of the given edge (inputs), the list of the numbers
of edges that are direct successor of the given edge
(outputs), the identifier of an appropriate blob (iden�

tifier), the list of underdetermined sets that describe
the coordinates and velocity of the blob at different
instants of time (coordinates), and the mean velocity
of the blob on the given edge of the graph
(mean_velocity).

Let us define the predicate
is_a_kind_of_a_running_away from the class ‘Ima�
geAnalyser,’ which describes the sought subgraph of
motions of blobs:

is_a_kind_of_a_running_away([E2|_],G,E1,E2,E3):-
E2 == {inputs:O,outputs:B|_},
B == [_,_|_],
contains_a_running_person(B,G,E3),
is_a_meeting(O,G,E2,E1),!.

is_a_kind_of_a_running_away([_|R],G,E1,E2,E3):-
is_a_kind_of_a_running_away(R,G,E1,E2,E3).

contains_a_running_person([N|_],G,P):-
get_edge(N,G,E),
is_a_running_person(E,G,P),!.

contains_a_running_person([_|R],G,P):-
contains_a_running_person(R,G,P).

is_a_meeting(O,_,E,E):-
O == [_,_|_],!.

is_a_meeting([N1|_],G,_,E2):-
get_edge(N1,G,E1),
E1 == {inputs:O|_},
is_a_meeting(O,G,E1,E2).

get_edge(1,[Edge|_],Edge):-!.
get_edge(N,[_|Rest],Edge):-

N > 0,
get_edge(N-1,Rest,Edge).

In other words, the graph describes a running away
situation if it contains an edge E2, which has edge E3 cor�
responding to a person who is running away as a succes�

sor and edge E1 corresponding to the meeting of at least
two people as a predecessor. Note that the edge E2 should
have at least two direct successors (test B == [_, _|_]).

is_a_running_person(E,_,E):-
E == {mean_velocity:V,frame1:T1,frame2:T2|_},
M1== ?fuzzy_metrics(V,1.0,0.5),
D== (T2 - T1) / sampling_rate,
M2== ?fuzzy_metrics(D,0.75,0.5),
M1 * M2 >= 0.5,!.

is_a_running_person(E,G,P):-
E == {outputs:B|_},
contains_a_running_person(B,G,P).

An edge of the graph corresponds to a running per�
son if the mean velocity and the length of the track of
a blob correspond to the given fuzzy definition. An
auxiliary function for calculating the fuzzy metrics is
given below (the first argument is the value to be esti�
mated, the second is a given threshold, and the third is
the width of the uncertainty area).

fuzzy_metrics(X,T,H) = 1.0 :-

X >= T + H,!.

fuzzy_metrics(X,T,H) = 0.0 :-

X <= T - H,!.

fuzzy_metrics(X,T,H) = V :-

V== (X-T+H) * (1 / (2*H)).

490

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 25 No. 3 2015

MOROZOV

Using the is_a_kind_of_a_running_away predi�
cate, we implement the above�mentioned proce�
dure draw_scene() of the ‘ImageAnalyser’ class,

which performs a logical analysis of the scene and
the visualization of the results of intelligent video
surveillance:

draw_scene():-
subtractor ? commit,
subtractor ? get_recent_frame_number(N),
subtractor ? get_recent_image(image),
subtractor ? get_connected_graphs(Graphs),
graphic_window ? suspend_redrawing,
graphic_window ? clear,
graphic_window ? draw_image(image,0,0,1,1),
image ? get_size_in_pixels(IW,IH),
draw_graphs(IW,IH,Graphs,N),
graphic_window ? draw_now.

The built�in predicate commit of the ‘ImageSubtrac�
tor’ class calculates the graphs of motion of blobs in the
state at the moment of the last frame processed by the
class. This operation is singled out into a separate pred�
icate with a view to optimization; the program may
have time to process several frames of the video image
before it will need the graphs of motion of blobs. The
built�in predicate get_recent_frame_number returns
the number of the last frame processed by the moment
of calling the predicate commit. The built�in predicate
get_recent_image returns the corresponding image
(the data are recorded in an instance of the ‘Buffered�
Image’ class that is stored in the image slot). The built�
in predicate get_connected_graphs returns the list of
connected graphs of motions of blobs. We use the fol�
lowing predicates of the built�in class ‘Canvas2D’:

suspend_redrawing—suspend the redrawing of an
image in the window, clear—clear the window,
draw_image—draw an image (the first argument is an
instance of the class ‘BufferedImage,’ the second and
third are the coordinates of the upper left corner of the
image, and the fourth and the fifth are the width and
the height of the image in a scale from 0 to 1), and
draw_now—resume the redrawing of the image in the
window. The predicate draw_graphs analyzes the
graphs of motions of blobs and displays additional
information on the screen in the form of lines, rectan�
gles, and inscriptions. Its arguments are the width and
height of the image (obtained by the get_size_in_pixels
predicate of the built�in class ‘BufferedImage’), the list
of the graphs, and the frame number.

draw_graphs(IW,IH,[G|R],N):-
is_a_kind_of_a_running_away(G,G,_,_,_),!,
draw_graph(IW,IH,G,G,'yes',N),
graphic_window ? set_text_alignment('CENTER','CENTER'),

Fig. 2. The intelligent video surveillance program has recognized a situation like a street incident. Heavy solid lines show the tra�
jectories of people involved in a probable street conflict, thin lines and circles indicate connected graphs of motions of blobs, and
rectangles represent the people involved in the incident.

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 25 No. 3 2015

DEVELOPMENT OF A METHOD FOR INTELLIGENT VIDEO MONITORING 491

graphic_window ? set_font({size:64}),
graphic_window ? set_pen({color:'Yellow'}),
graphic_window ? draw_text(0.5,0.5,"Attention!"),
draw_graphs(IW,IH,R,N).

draw_graphs(IW,IH,[G|R],N):-!,
draw_graph(IW,IH,G,G,'no',N),
draw_graphs(IW,IH,R,N).

draw_graphs(_,_,_,_).

The predicate draw_graphs unrolls the list of
graphs, analyzes them, draws the trajectories of blobs
on the screen using the predicate draw_graph, and
outputs the results of logical analysis. If a current
graph contains the sought scenario of a street incident,
the execution of the predicate
is_a_kind_of_a_running_away ends successfully, and
the first rule of the predicate draw_graphs works on. A
word “Attention!” appears on the screen, and the
predicate draw_graph indicates the current position of
the participants of the incident (Fig. 2). For simplicity,
here we do not consider the details of the operation of
graphic predicates of Actor Prolog, as well as the inter�
nal structure of the draw_graph predicate. The pro�
gram of intelligent video surveillance yields the trajec�
tories of people involved in a probable street conflict
(they are indicated by heavy lines in the figure), as well
as their current positions (people are shown by rectan�
gles).

The example considered represents a simple logic
program that performs intelligent video surveillance of
abnormal behavior of people. The program imple�
ments all the necessary stages of information process�
ing: real�time inputting of video information, low�
level processing of a video image, logical analysis of
video information, and displaying the results on the
screen.

CONCLUSIONS

We have developed a method for intelligent video
monitoring of abnormal behavior of people on the
basis of parallel object�oriented logic programming.
We have shown that the logic language Actor Prolog
allows one to describe and recognize probable scenar�
ios of abnormal behavior of people by providing a nat�
ural separation and implementation of various stages
of video image processing in the form of interacting
parallel processes. Translation of the logic programs of
intelligent video monitoring into the Java language
provides necessary reliability, portability, and openness
of the software, including the possibility of access to
open�code libraries.

We have designed and implemented in the Java lan�
guage an experimental built�in class of Actor Prolog
that carries out low�level processing of video images,
which is necessary for their subsequent logical analy�
sis. This class is built into an open source library [20],
which is designed with a view to facilitate experiments

with logical analysis of video images for third�party
designers and cooperation in this promising field of
research.

ACKNOWLEDGMENTS

I am grateful to Abhishek Vaish (IIIT Allahabad)
and to A.F. Polupanov, O.S. Sushkova, and V.E. Antc�
iperov from the Kotel’nikov Institute of Radio Engi�
neering and Electronics, Russian Academy of Sci�
ences, as well as to V.V. Devyatkov, A.N. Alfimtsev,
V.S. Popov, and I.I. Lychkov from Bauman Moscow
State Technical University.

This work was supported by the Russian Founda�
tion for Basic Research, project no. 13�07�92694�
Ind_a.

REFERENCES

1. J. Aggarwal and M. Ryoo, “Human activity analysis:
A review,” ACM Comput. Surv. (CSUR) 43 (3), 16:1–
16:43 (2011).

2. J. Junior, S. Musse, and C. Jung, “Crowd analysis using
computer vision techniques: A survey,” IEEE Signal
Processing Mag. 27 (5), 66–77 (2010).

3. I. Kim, H. Choi, K. Yi, et al., “Intelligent visual sur�
veillance: A survey,” Int. J. Control, Automat., Syst. 8
(5), 926–939 (2010).

4. A. Artikis, A. Skarlatidis, and G. Paliouras, “Behaviour
recognition from video content: a logic programming
approach,” Int. J. Artificial Intellig. Tools 19 (2), 193–
209 (2010).

5. A. Skarlatidis, A. Artikis, J. Filippou, and G. Paliouras,
“A probabilistic logic programming event calculus,”
Theory Practice Logic Programming, No. 9, 1–33
(2014).

6. V. Shet, M. Singh, C. Bahlmann, et al., “Predicate
logic based image grammars for complex pattern recog�
nition,” Int. J. Comput. Vision 93 (2), 141–161 (2011).

7. V. Shet, D. Harwood, and L. Davis, “VidMAP: Video
monitoring of activity with Prolog,” in Proc. IEEE
Conf. AVSS 2005 (Como, 2005), pp. 224–229.

8. S. O’Hara, “VERSA: Video event recognition for sur�
veillance applications,” M.S. Thesis (Univ. of Nebraska
at Omaha, 2008).

9. F. Machot, K. Kyamakya, B. Dieber, and B. Rinner,
“Real time complex event detection for resource�lim�
ited multimedia sensor networks,” in Proc. AMMCSS
2011 (Klagenfurt, 2011), pp. 468–473.

492

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 25 No. 3 2015

MOROZOV

10. A. A. Morozov, “Actor Prolog: An object�oriented lan�
guage with the classical declarative semantics,” in Proc.
IDL 1999, Ed. by K. Sagonas and P. Tarau (Paris, 1999),
pp. 39–53. http://www.cplire.ru/Lab144/paris.pdf

11. A. A. Morozov, “On semantic link between logic,
object�oriented, functional, and constraint program�
ming,” in Proc. MultiCPL 2002 (Ithaca, NY, 2002), pp.
43–57. http://www.cplire.ru/Lab144/multicpl.pdf

12. A. A. Morozov, “Logic object�oriented model of asyn�
chronous concurrent computations,” Pattern Recogn.
Image Anal. 13 (4), 640–649 (2003).
http://www.cplire.ru/Lab144/pria640.pdf

13. A. A. Morozov, “Development and application of logi�
cal actors mathematical apparatus for logic program�
ming of web agents,” in Proc. ICLP 2003, Ed. by
C. Palamidessi (Springer, Heidelberg, 2003), pp. 494–
495.

14. A. A. Morozov, “Operational approach to the modified
reasoning, based on the concept of repeated proving
and logical actors,” in Proc. CICLOPS 2007, Ed. by
V. S. C. Salvador Abreu (Porto, 2007), pp. 1–15.
http://www.cplire.ru/Lab144/ciclops07.pdf

15. A. A. Morozov, “Visual logic programming method
based on structural analysis and design technique,” in
Proc. ICLP 2007, Ed. by V. Dahl and I. Niemel
(Springer, Heidelberg, 2007), pp. 436–437.

16. A. A. Morozov and A. F. Polupanov, “Intelligent visual
surveillance logic programming: implementation
issues,” in Proc. CICLOPS�WLPE 2014, Ed. by
T. Ströder and T. Swift, Aachener Informatik Berichte
no. AIB�2014�09 (RWTH Aachen Univ., 2014),
pp. 31–45. http://aib.informatik.rwth�aachen.de/
2014/2014�09.pdf

17. A. A. Morozov, A. Vaish, A. F. Polupanov, et al.,
“Development of concurrent object�oriented logic
programming system to intelligent monitoring of

anomalous human activities,” in Proc. BIODEVICES
2014, Ed. by A. C. G. Plantier, Jr., T. Schultz, et al.
(SCITEPRESS, 2014), pp. 53–62.

18. A. A. Morozov and O. S. Sushkova, The intelligent
visual surveillance logic programming Web Site (2014).
http://www.fullvision.ru/actor_prolog_2014

19. R. Fisher, CAVIAR test case scenarios. The EC funded
project IST 2001 37540 (2007). http://home
pages.inf.ed.ac.uk/rbf/CAVIAR/

20. A. A. Morozov, A GitHub repository containing source
codes of Actor Prolog built�in classes (2014).
https://github.com/Morozov2012/actor�prolog�java�
library

Translated by I. Nikitin

Aleksei A. Morozov was born in
1968. Graduated from Bauman Mos�
cow State Technical University in
1991. Received his Candidate’s
Degree in Physics and Mathematics in
1998. Senior researcher at the
Kotel’nikov Institute of Radio Engi�
neering and Electronics, Russian
Academy of Sciences. His scientific
interests are logic programming, intel�
ligent video surveillance, and process�
ing of biomedical signals (EEG,

EMG, and MEG). The author of 90 publications.

