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Abstract: A logic programming approach to the intelligent monitoring of anomalous human activity is considered. 
The main idea of this approach is in using of a first order logic for describing abstract concepts of 
anomalous human activity, i.e. brawls, sudden attack, armed attack, leaving object, loitering, pickpocketing, 
personal theft, immobile person, etc. We use the Actor Prolog concurrent object-oriented logic language and 
a state-of-the-art Prolog-to-Java translator for efficient implementation of logical inference on video scenes. 
A logical rules generation methodology is considered in relation to the analysis of anomalous human 
behaviour. The problem of creation of special built-in classes of Actor Prolog for the low-level video 
processing is discussed. 

1 INTRODUCTION 

Human activity recognition is a rapidly growing 
research area with important application domains 
including security and anti-terrorist issues 
(Aggarwal, 2011; Junior, 2010; Kim, 2010). 
Recently logic programming was recognised as a 
promising approach for dynamic visual scenes 
analysis (Filippou, 2012; Shet, 2011; O'Hara, 2008; 
Machot, 2011). The idea of a logic programming 
approach is in usage of logical rules for description 
and analysis of people activities. To approach the 
problem, knowledge about object co-ordinates and 
properties, scene geometry, and human body 
constraints is encoded in the form of certain rules in 
a logic programming language and is applied to the 
output of low-level object / feature detectors. There 
are several studies based on this idea. In (Filippou, 
2012) a system was designed for recognition of so-
called long-term activities (such as fighting and 
meeting) as temporal combinations of short-term 
activities (walking, running, inactive, etc.) using a 
logic programming implementation of the Event 
Calculus. The ProbLog state-of-the-art probabilistic 
logic programming language was used to handle the 
uncertainty that occurs in human activity 

recognition. An obvious merit of this approach is a 
high level of abstraction in describing human 
activity, but it may be too slow for the real time 
video processing. Mathematical semantics of 
probabilistic logical inference is also questionable. 
In (Shet, 2011) an extension of predicate logic with 
the bilattice formalism that permits processing of 
uncertainty in the reasoning was proposed. The 
VidMAP visual surveillance system that combines 
real time computer vision algorithms with the Prolog 
based logic programming had been announced by 
the same team. S. O'Hara (O'Hara, 2008) 
communicated the VERSA general-purpose 
framework for defining and recognising events in 
live or recorded surveillance video streams. 
According to (O'Hara, 2008), VERSA provides 
more advanced spatial and temporal reasoning than 
VidMAP and is based on SWI-Prolog. F.A. Machot 
et al. (Machot, 2011) have proposed real time 
complex audio-video event detection based on 
Answer Set Programming approach. The results 
indicate that this solution is robust and can easily be 
run on a chip. 

Conventional approaches to human behaviour 
recognition include low-level and high-level ones. In 
this paper, we address the problem of the high-level 
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semantic analysis of people activity. We use the 
Actor Prolog concurrent object-oriented logic 
programming language (Morozov, 1999, 2002, 
2003, 2007, 2012) for implementation of the logical 
inference on video scenes. The Actor Prolog system 
includes a Prolog-to-Java translator that provides 
means for a high-level concurrent programming and 
a direct access to the low-level processing 
procedures written in Java. 

In the case of simple human behaviour, a set of 
logic program rules can be created manually on the 
basis of a priori knowledge of the particular 
behaviour features, for example, speed of moving. In 
the case of complex spatio-temporal behaviour, a 
special methodology of generation of the logical 
rules is necessary. 

We have described our first experiments in the 
area of human activity recognition in Section 2. The 
problem of creation of special built-in classes of the 
Actor Prolog logic language for the low-level video 
processing is discussed in Section 3. A methodology 
of logical rules generation based on a hierarchy of 
fuzzy finite state automata is briefly considered in 
Section 4. 

2 LOGICAL ANALYSIS OF 
MANUALLY MARKED VIDEOS 

On the first stage of the research, we have performed 
several experiments on analysis of manually marked 
videos that is traditional approach in the area. The 
CAVIAR data sets (Fisher, 2007) were used. The 
CAVIAR data sets are annotated using the XML-
based Computer Vision Markup Language (CVML). 
The structure of CVML is simple enough, so we 
read it using the 'WebReceptor' built-in class of the 
Actor Prolog for XML / HTML parsing. The CVML 
annotations contain information about co-ordinates 
of separate persons and groups of persons in videos. 
So, our experiments have pursued the following 
goals: 
1. To check whether the Actor Prolog system is 

fast enough to process videos in real time even 
without performing low-level analysis. 

2. To check whether there is enough information 
about the positions of persons for accurate 
estimation of the velocity and the acceleration 
of separate personages in the video scene. 
The latter issue is important because the 

accurate estimation of the velocity / acceleration 
opens a way for the recognition of so-called abrupt 
motions of objects (Filippou, 2012). This kind of 

motions is necessary for recognition of several long-
term activities (such as fighting or sudden attack), 
though recognition of abrupt motions is not usually 
provided by standard low-level analysing 
procedures. The abrupt motions are not marked in 
the CAVIAR annotations as well. 

An example of abrupt motion recognition is 
shown on the figure 1. A program written in Actor 
Prolog uses given co-ordinates of two persons to 
estimate the distance between them and the 2-nd 
derivative of the co-ordinates to detect abrupt 
motions of the persons. 

 

Figure 1: An example of CAVIAR video with a case of 
abrupt motions. 

A logical rule describes an abnormal behaviour 
(fighting) as a conjunction of two conditions: 
1. Several persons have met sometime and 

somewhere. 
2. After that they implement abrupt motions. 

The text of the logic program is not given here 
for brevity. After recognition of these two 
conditions, the logic programming system has 
decided that there was a case of scuffle and has 
indicated the fighting persons by a red rectangle (see 
figure 2). 

 

Figure 2: The logic programming system has recognised 
that two persons formed a group and were fighting. 

This example demonstrates a possibility of 
recognition of video scenes semantics using the 
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logical inference on results of the low-level 
recognition of separate objects; however one can see 
the following bottle-neck of the approach. Manually 
defined co-ordinates of the objects were used for 
estimation of their acceleration and nobody can 
guarantee that automatic low-level procedures will 
provide exact values of co-ordinates that are good 
enough for numerical differentiation. So, the 
discussion on the high-level recognition procedures 
is impossible without consideration of underlying 
low-level recognition methods. 

The second issue of this example is whether it is 
useful to separate the recognition process into 
concurrent sub-processes implementing different 
stages of the high-level logical inference. Working 
intensity of different sub-processes is various. For 
example, the differentiation of co-ordinates requires 
more computational resources and another sub-
process that implements recognition of people 
behaviour could wait for the results of 
differentiation. 

3 ADVANCED LOGIC ANALYSIS 
OF VIDEO SCENES 

On the next stage of the research, we have 
implemented experiments on video analysis based 
on the automatically extracted information about co-
ordinates and velocity of blobs in video scenes. 

3.1 Implementation of Base Low-level 
Video Processing Procedures 

A promising approach for implementation of the 
low-level recognition procedures in a logic language 
is usage of the OpenCV computer vision library and 
we are planning to link Actor Prolog with the 
JavaCV library that is a Java interface to OpenCV. 
Nevertheless, Java has enough standard tools to 
solve simple image processing / recognition 
problems and we have started our experiments with 
pure Java. 

We have created low-level Java procedures that 
implement several basic recognition tasks: 
1. Background subtraction; 
2. Discrimination of foreground blobs; 
3. Tracking of the foreground blobs over time; 
4. Detection of interactions between the blobs. 

The first experiments have demonstrated clearly 
that the exact estimation of an object velocity was 
impossible without taking into account the 
interactions of objects (see figure 3), because of 

edge effects of differentiation in the interaction 
points. 

 

Figure 3: A low-level procedure discriminates trajectories 
(violet lines) of objects and moments of their interactions 
(green circle marks and blue links). 

After implementation of the object interactions 
check, we have got tracks that were accurate enough 
to determine whether a person is walking or running. 
In the next section, we will describe an approach to 
lower boundary estimation of blob velocity and 
discuss its possible application to the detection of 
anomalous behaviour of people. 

3.2 A Fast Algorithm for Estimation of 
Object Velocity 

At this stage of research, we use standard method of 
recovering physical co-ordinates of objects in a 
scene, based on computing inverse matrix of 
projective transformation by co-ordinates of 4 
defining points. A well-known disadvantage of this 
method is so-called ground plane assumption, that is, 
one cannot compute co-ordinates of body parts that 
are situated outside from a pre-defined plane. 
Usually, this pre-defined plane is a ground one and 
we can estimate properly the co-ordinates of person's 
shoes only. Generally speaking, this problem cannot 
be avoided in the framework of single camera 
approach, nevertheless, our idea is in usage of object 
velocity (but not co-ordinates) for the anomalous 
behaviour detection and this point is exploited in the 
following algorithm. 

We consider simplified rectangle blobs 
describing moving objects in the scene (see example 
on figure 5). Co-ordinates of every corner of the 
blob are recovered using the inverse matrix of the 
projective transformation. Then, one compares the 
co-ordinates of corresponding corners of the blob in 
consecutive frames and calculates the first derivative 
of their co-ordinates. The idea is that only the 
corners situated in the ground plane give realistic 
estimations of velocity and other corners give 
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greater values, because upper parts of body visually 
correspond to more distant points in the ground 
plane. So, we exploit this property of projective 
transformation and accept the lower boundary 
estimation of object velocity as a minimal value of 
velocities (V11, V12, V21, V22) of four blob corners: 

V ≈ min(abs(V11),abs(V12),abs(V21),abs(V22)) 

Note, that the algorithm does not recover the 
direction of blob movement. The precision of the 
estimation of the blob velocity is not very high too, 
because of the approximate nature of the algorithm. 
Moreover, the automatic detection of blob shapes 
often produce illegal co-ordinates of blob corners 
because of common problems with shades, 
obstacles, digital noise etc, and this issue is an 
additional source of errors in the velocity estimation. 

We have applied a median filtering to eliminate 
outliers in the velocity function. For instance, in the 
example on figure 4, the 11 point median filter 
provides an estimation of blob velocity that is good 
enough for discrimination of running and walking 
persons in the scene. 

We have implemented this algorithm of velocity 
estimation in the library of low-level methods of 
image analysis of the Actor Prolog system and use it 
in our experiments. 

3.3 Creation of a Built-in Class of 
Actor Prolog 

We have developed a special built-in class of the 
Actor Prolog language that uses formerly described 
low-level recognition procedures. The 
'ImageSubtractor' class of Actor Prolog implements 
the following facilities: 
1. Video frames pre-processing including 2D-

gaussian filtering, 2D-median filtering, and 
background subtraction. 

2. Recognition of moving blobs and creation of 
Prolog data structures describing the co-
ordinates of the blobs in every moment. 

3. Recognition of tracks of blob motions and 
creation of Prolog data structures describing the 
co-ordinates and the velocity of the blobs. The 
tracks are divided into separate segments; where 
segment ends there are points of interaction 
between the blobs. 

4. Recognition and ejection of immovable and 
slowly moving objects. This feature is based on 
simple fuzzy inference on the attributes of the 
tracks (the co-ordinates of the tracks and the 
average velocities of the blobs are considered). 

5. Recognition of connected graphs of linked

 tracks of blob motions and creation of Prolog 
data structures describing the co-ordinates and 
the velocity of the blobs. 

We consider two tracks as linked ones if there 
are interactions between the blobs of these tracks. In 
some applications, it is useful to eject tracks of 
immovable and slowly moving objects from the 
graphs before further processing of the video scenes. 

3.4 An Example of Anomalous 
Behaviour Detection 

Let us consider an example of logical inference on 
video. The input of the logic program written in 
Actor Prolog is the Fight_RunAway1 sample 
provided by the CAVIAR team (the sequence of 
JPEG files is used). The program will use no 
additional information about the content of the video 
scene, but only co-ordinates of 4 defining points in 
the ground plane (the points are provided by 
CAVIAR). The total text of the logic program is not 
given here for brevity; we will discuss only the 
program structure and main stages of data analysis. 

The logic program creates two concurrent 
processes with different priorities (see Morozov, 
2003 for details about Actor Prolog model of 
asynchronous concurrent computations). The first 
process has higher priority and implements video 
data gathering. This process reads JPEG files and 
sends them to the instance of the 'ImageSubtractor' 
predefined class that implements all low-level 
processing of video frames. The sampling rate of the 
video is 25 frames per second, so the process loads a 
new JPEG file every 40 milliseconds. 
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Figure 4: An example of estimation of velocities of blobs 
in a visual scene (see figure 3). The X-axis denotes time in 
seconds and the Y-axis denotes lower boundary estimation 
of blob velocities (m/sec). One can recognise walking 
persons (before the beginning of the attack) and running 
persons (after the separation of the trajectories of persons) 
on the diagram. 
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The second concurrent process implements logical 
analysis of collected information and outputs results 
of the analysis. The analysis of video frames 
requires more computational resources, but it does 
not suspend the low-level analysis, because the 
second process has less priority. The analysis 
includes extraction of blobs, tracking of the blobs 
over time, detection of interactions between the 
blobs, creation of connected graphs of linked tracks 
of blobs, and estimation of average velocity of blobs 
in separate segments of tracks (see figure 4). This 
information is received by the logic program in a 
form of Prolog terms describing the list of connected 
graphs. 

The 'ImageSubtractor' class uses the following 
data structures for describing connected graphs of 
tracks (note, that the DOMAINS, the 
PREDICATES, and the CLAUSES program 
sections in Actor Prolog have traditional meaning 
developed in the Turbo / PDC Prolog systems): 

DOMAINS: 
 
ConnectedGraph  = GraphEdge*. 
GraphEdge   = { 
       frame1: INTEGER, 
       x1: INTEGER, 
       y1: INTEGER, 
       frame2: INTEGER, 
       x2: INTEGER, 
       y2: INTEGER, 
       inputs: EdgeNumbers, 
       outputs: EdgeNumbers, 
       identifier: INTEGER, 
       coordinates: TrackOfBlob, 
       mean_velocity: REAL 
       }. 
EdgeNumbers = EdgeNumber*. 
EdgeNumber  = INTEGER. 
TrackOfBlob = BlobCoordinates*. 
BlobCoordinates = { 
       frame: FrameNumber, 
       x: INTEGER, 
       y: INTEGER, 
       width: INTEGER, 
       height: INTEGER, 
       velocity: REAL 
       }. 

That is, connected graph is a list of 
underdetermined sets (Morozov, 1999) denoting 
separate edges of the graph. Every edge is directed 
and has the following attributes: numbers of front 
and last frames (frame1, frame2), co-ordinates of 
front and last points (x1, y1, x2, y2), a list of edge 

numbers that are predecessors of the edge 
(inputs), a list of edge numbers that are followers 
of the edge (outputs), the identifier of 
corresponding blob (an integer identifier), a 
list of sets describing the co-ordinates and the 
velocity of the blob in different moments of time 
(coordinates), and an average velocity of the 
blob in this edge of the graph (mean_velocity). 

 

Figure 5: A logical inference has found a possible case of 
sudden attack in the graph of blob trajectories. Rectangle 
blobs are depicted by yellow lines, blob trajectories are 
depicted by red lined, moments of interactions between 
blobs are depicted by green circles and blue links. 

The logic program checks the graph of tracks and 
looks for the following pattern of interaction among 
several persons: if two or more persons met 
somewhere in the scene, and one of them has walked 
(not run) before this meeting, and one of them has 
run (not walked) after this meeting, the program 
considers this scenario as a kind of a lam and a 
probably case of a sudden attack or a theft. So, the 
program alarms if this kind of sub-graph is detected 
in the total graph of tracks. In this case, the program 
draws all tracks of the graph under consideration in 
red and outputs the "Attention!" warning in the 
middle of the screen (see figure 5). 

One can describe formally the concept of a lam 
using defined connected graph data type. 

PREDICATES: 
 
is_a_lam( 
 ConnectedGraph, 
 ConnectedGraph, 
 ConnectedGraphEdge, 
 ConnectedGraphEdge, 
 ConnectedGraphEdge) 
 - (i,i,o,o,o); 

We will define the is_a_lam (G, G, P1, E, P2) 
predicate with the following arguments: G – a graph 
to be analysed (the same data structure is used in the 
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first and the second arguments), E – an edge of the 
graph corresponding to probable incident, P1 – an 
edge of the graph that is a predecessor of E, P2 – an 
edge that is a follower of E. Note that G is an input 
argument of the predicate and P1, E, and P2 are 
output ones. Here is Actor Prolog program code with 
brief explanations: 

CLAUSES: 
 
is_a_lam([E|_],G,P1,E,P2):- 
  E == {inputs:I,outputs:O|_}, 
  O == [_,_|_], 
  walking_person(I,G,P1), 
  running_person(O,G,P2),!. 
is_a_lam([_|Rest],G,P1,E,P2):- 
  is_a_lam(Rest,G,P1,E,P2). 
 
walking_person([N|_],G,P):- 
  get_edge(N,G,E), 
  is_a_walking_person(E,G,P),!. 
walking_person([_|Rest],G,P):- 
  walking_person(Rest,G,P). 
 
running_person([N|_],G,P):- 
  get_edge(N,G,E), 
  is_a_running_person(E,G,P),!. 
running_person([_|Rest],G,P):- 
  running_person(Rest,G,P). 
 
get_edge(1,[Edge|_],Edge):-!. 
get_edge(N,[_|Rest],Edge):- 
  N > 0, 
  get_edge(N-1,Rest,Edge). 

In other words, the graph contains a case of a 
lam if there is an edge E in the graph that has a 
predecessor P1 corresponding to a walking person 
and a follower P2 that corresponds to a running 
person. It is requested also that E has more than one 
follower (it is a case of branching in the graph). 

is_a_walking_person(E,_,E):- 
  E == {mean_velocity:V|_}, 
  V <= 2.0,!. 
is_a_walking_person(E,G,P):- 
  E == {inputs:I|_}, 
  walking_person(I,G,P). 

That is, the graph edge corresponds to a walking 
person if the average blob velocity in this edge is 
less or equal to 2 m/sec, or the edge has a 
predecessor that corresponds to a walking person. 

The graph edge corresponds to a running person 
if the average velocity in this edge is more or equal 
to 3 m/sec, or the edge has a follower corresponding 

is_a_running_person(E,_,E):- 
  E == {mean_velocity:V|_}, 
  V >= 3.0,!. 
is_a_running_person(E,G,P):- 
  E == {outputs:O|_}, 
  running_person(O,G,P). 

to a running person. 
Note that aforementioned rules use plain 

numerical thresholds to discriminate walking and 
running persons for brevity. Better discrimination 
could be provided by a kind of a fuzzy check, which 
can be easily implemented using arithmetical means 
of standard Prolog. 

The example illustrates the possible scheme of a 
logic program implementing all necessary stages of 
video processing including video information 
gathering, low-level image analysis, high-level 
logical inference on the video scene, and reporting 
the results of intelligent visual surveillance. 

4 LOGICAL RULES 
GENERATION 
METHODOLOGY 

A logical rules generation methodology based on a 
hierarchy of fuzzy finite state automata was 
introduced in (Devyatkov, 2005). Concepts and 
notations described in (Devyatkov, 2005) should be 
modified according to the specified problem domain. 
Let }|{ NttT ii   be a discrete set of time 

instances with constant intervals ii ttt  1  

between consecutive time instances. Let 
}|{],[ eses tttttt   be a time interval T. Assume 

that each 0th level feature (human speed and position 
for our example) of each moving object   from set 

},,,{ 21 l   at time instance t can take on a 

value )(
0 tiy  , },,1{ 00 mi  , called feature sample. 

Samples tuple )(,),(],[
000 eses tititti yyY   , 

},,1{ 00 mi   of a single 0th level feature taken at 

several consecutive time instances es tt ,,  during 

the ],[ es tt time interval is called a trend. 

Let us consider the following situation. Two 
persons walk along perpendicular lines towards their 
intersection. While person A is far from intersection, 
person B slows down waiting for person A. When 
person A enters intersection, person B accelerates 
and runs into person A. 

In order to formalise the persons' behaviour,
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 appropriate features should be specified. Let 
persons A and B walk along perpendicular lines with 
intersection point O. Let xOy be a rectangular co-
ordinate system such that Ox axis corresponds to the 
line person A walks along, Oy axis corresponds to 
the line person B walks along (figure 6). For the 
purpose of simplicity, each person is considered as a 
rectangle, thus the person co-ordinates are rectangle 
centroid co-ordinates. Since persons move strictly 
along the co-ordinate axes, the current position of 
persons A and B can be determined by single co-

ordinates )( A
tsy   and )( B

tsy   measured along 

corresponding co-ordinate axes. The persons' 

position co-ordinates )( A
tsy  , )( B

tsy   are treated as 

first features. The persons' speed values )( A
tvy  , 

)( B
tvy   are treated as second features. 

One should specify observation time interval 
}|{],[ eses tttttt   along with time instances 

],[ esi ttt   the feature samples to be taken at. In 

practice, observation time interval is determined 
with some physical considerations in mind, e.g. 
maximum time required for passing the observed 
path segment; time instances are determined by the 
surveillance equipment. Particular parameter values 
assignment is outside of the scope of this paper. 

 

Figure 6: Two persons in rectangular co-ordinate system. 

Linguistic variables are specified and behaviour 
template models are composed according to 

(Devyatkov, 2005). Let )( Aposition  , )( Aspeed   

and )( Bposition  , )( Bspeed   be linguistic 

variables that describe position and speed of persons 

A and B. Linguistic variables )( Aposition   and 

)( Bposition   take on linguistic values )( Xfar  , 

)( Xnear  , and )( Xinside  . Linguistic variables 

)( Aspeed   and )( Bspeed   take on linguistic values 

)( Xhigh   and )( Xlow  . 

Figures 7 and 8 present fuzzy sets corresponding 

to linguistic values )( Xfar  , )( Xnear  , )( Xinside   

and )( Xhigh  , )( Xlow  . 

Fuzzy sets shown on figures 7 and 8 are used to 
compose first level template automata 

)( Xpos
M


, 

)( Aspeed
M


 and 

)( Bspeed
M


 that describe position and 

speed of persons A and B. 
Automaton 

)( Xpos
M


, shown as graph on 

figure 4, determines sequence of linguistic values 

[ )( Xfar  , )( Xnear  , )( Xinside  ] of linguistic 

variable )( Xposition  . The automaton graph is 

based on a chain of allowed states b11 – b12 – b13 
corresponding to linguistic values of the determined 
sequence. b11 is the initial state (marked with input 
arrow on figure 9) and b13 is the final state (marked 
with output arrow on figure 9) of the automaton. 
State transitions are specified as follows. Provided 
with input linguistic value corresponding to the 
current state, automaton retains its current state. 
Provided with input linguistic value corresponding 
to the next allowed state, the automaton moves to 
that state. Automaton moves to denied state b14 in 
case of input linguistic value confronting to allowed 
sequence of the automaton. Having entered the 
denied state once, the automaton cannot leave this 
state. Automata 

)( Aspeed
M


 and 

)( Bspeed
M


 are 

presented as graphs on figures 10 and 11. 
Automaton graphs are different since behaviour of 
person A differs from behaviour of person B. 

The second level template automaton should be 
composed in order to describe joint persons' 

behaviour. Let ),( BAcondition   be a linguistic 

variable that takes on linguistic values ),( BAsafe  , 

),( BAwarning  , and ),( BAunsafe   specified 

with the following relations: 

safe(θA, θB) = [pos(θt
A) = far(θA)] Λ  

[pos(θt
A) = far(θA)] (1)

warning(θA, θB) = ([pos(θt
A) = near(θA)] Λ  

[speed(θt
B) = high(θB)]) V  

([speed(θt
A)=high(θA)] Λ [pos(θt

B)=near(θB)]) (2)
unsafe(θA, θB) = [pos(θt

A) = inside(θA)] Λ  
[pos(θt

B) = inside(θB)] (3)
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Figure 7: Fuzzy sets, corresponding to linguistic values 
far(θX), near(θX), and inside(θX). 

 

Figure 8: Fuzzy sets, corresponding to linguistic values 
low(θX) and high(θX). 

 

Figure 9: First level automaton Mpos(θ
X

) graph. 

Each linguistic value of a linguistic variable 

),( BAcondition   corresponds to a composite fuzzy 

set, determined on a multidimensional domain. 
Domain of the composite fuzzy set is a Cartesian 
product of domains of fuzzy sets involved into the 
corresponding relation (Devyatkov, 2005). 
According to equation (1) domain of linguistic value 

),( BAsafe   is equal to 

)]([)]([)],([ BABA fardomneardomsafedom  , 

where ][Edom  is domain of fuzzy set E;   is 

Cartesian product. 

 

Figure 10: First level automaton Mspeed(θ
A

) graph. 

 

Figure 11: First level automaton Mspeed(θ
B

) graph. 

Membership function of composite fuzzy set can 
be expressed through membership functions of fuzzy 
sets involved into the corresponding relation 
according to the following rules: 

a = b Λ c → Ra(yb, yc) = min{Rb(yb), Rc(yc)} (4)

a = b V c → Ra(yb, yc) = max{Rb(yb), Rc(yc)} (5)

a = ¬b → Ra(yb) = 1 – Rb(yb), (6)

where a, b, c are fuzzy sets; ER  is membership 

function of fuzzy set E, determined on domain 
][Edom ; ][bdomyb  , ][cdomyc   are feature 

values from corresponding domains. 
According to equation (4), membership function 

of composite fuzzy set, specified on a conjunction of 
two fuzzy sets, is equal to minimum value among 
membership functions of its composing fuzzy sets. 

Value of membership function numerically 
expresses the goodness of current feature values for 
a distinct linguistic value. Linguistic variable 

),( BAcondition   is set to linguistic value with the 

most membership function for current feature

BIODEVICES�2014�-�International�Conference�on�Biomedical�Electronics�and�Devices

60



 values. 
Second level template automaton 

),( BAcondition
M


 

that describes the joint persons' behaviour is shown 
on figure 12. 

 

Figure 12: Second level automaton Mcondition(θ
A

 , θ
B

) graph. 

The computational methodology scheme is 
presented on figure 13. It includes five units for 
linguistic variables evaluation and processing, 
arranged in two levels. Each unit compute value of 
corresponding linguistic variable and inputs it to a 
corresponding automaton. 

Situation recognition is implemented as follows. 
Initially, all first and second level automata are reset 
to their initial states. Then feature samples for 
consecutive time instances ],[ esi ttt   are passed by 

turn into the first level units for evaluation and 
processing of the first level linguistic variables. The

 first level units compute values of linguistic 
variables and pass them into the second level unit for 
evaluation and processing of the second level 

linguistic variable ),( BAcondition  . During 

operation, the first and the second level automata 
may change their states. Situation is recognised if all 
first and second level automata have moved to their 
final states after all feature samples have been 
processed. Situation is not recognised if one 
automaton at least has not moved to its final state. 

The computational methodology scheme based 
on fuzzy finite automata can easily be converted to a 
logic program, using standard techniques of 
transforming finite state machines into the logic 
programs (Bratko, 1986). 

5 CONCLUSIONS 

A prospective approach for implementing the logic 
programming to the problem of intelligent 
monitoring of people activity is a translation from a 
concurrent object-oriented logic programming 
language to Java. Our study has demonstrated that 
the Actor Prolog logic programming system is 
suitable for this purpose and provides essential 
separation of the recognition process into concurrent 
sub-processes implementing different stages of high-
level analysis. 

A specialised built-in class of the Actor Prolog 
language implementing simple pre-processing of

 

Figure 13: The computational methodology scheme. 
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video data and low-level analysis of video scenes 
concerning the problem of intelligent monitoring of 
people activity was demonstrated. We have 
implemented a simple analysis of videos based on 
automatically extracted information on the co-
ordinates and velocities of blobs in the video scene. 
It was shown that robust recognition of abrupt 
motions is impossible without accurate low-level 
recognition of body parts (face, hands). This is a 
subject of further studies. 

An extension of the Actor Prolog logic 
programming system to advanced algorithms of low-
level video processing and to investigations of new 
possibilities at the level of logical analysis is 
discussed. It is supposed to complete a prototype of 
an open source Java library for studying logical 
description and analysis of people behaviour in order 
to facilitate researches in the field of intelligent 
monitoring of anomalous people activity. 

A logical rules generation methodology is 
proposed for situation analysis in the environment of 
moving objects. A formal method for representing 
situations using hierarchy of fuzzy finite state 
automata was considered. Future work will include 
comprehensive testing of the proposed methods on 
massive datasets and development of fully automatic 
method for situation representation using real feature 
trends. 
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